Chiropractic Spinal Adjustments,

 Changes in Organ Systems

& Treatment of Disease

 

A literature review and report on the positive effects of chiropractic on the autonomic nervous system, heart function and the circulatory system

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William Owens DC, DAAMLP

 

Citation: Studin M., Owens W., (2015) Chiropractic Spinal Adjustments, Changes in Organ Systems and Treatment of Disease, The American Chiropractor, 38(11) 20, 22-25

 

A report on the scientific literature 

The autonomic nervous system is the part of the nervous system that supplies the internal organs, including the blood vessels, stomach, intestine, liver, kidneys, bladder, genitals, lungs, pupils, heart, and sweat, salivary, and digestive glands.

 

The autonomic nervous system has two main divisions:

  • Sympathetic
  • Parasympathetic

After the autonomic nervous system receives information about the body and external environment, it responds by stimulating body processes, usually through the sympathetic division, or inhibiting them, primarily through the parasympathetic division. The autonomic nerve pathway involves two nerve cells. One cell is located in the brain stem or spinal cord and is connected by nerve fibers to the other cell, which is located in a cluster of nerve cells (called an autonomic ganglion). Nerve fibers from these ganglia connect with internal organs. Most of the ganglia for the sympathetic division are located just outside the spinal cord on both sides of it. The ganglia for the parasympathetic division are located near or in the organs they connect with.

 

The autonomic nervous system controls many internal body processes such as the following:

  • Blood pressure
  • Heart and breathing rates
  • Body temperature
  • Digestion
  • Metabolism (thus affecting body weight)
  • The balance of water and electrolytes (such as sodium and calcium)
  • The production of body fluids (saliva, sweat, and tears)
  • Urination
  • Defecation
  • Sexual response

Many organs are controlled primarily by either the sympathetic or the parasympathetic division. Sometimes the two divisions have opposite effects on the same organ. For example, the sympathetic division increases blood pressure, and the parasympathetic division decreases it. Overall, the two divisions work together to ensure that the body responds appropriately to different situations. (Low, 2015, http://www.merckmanuals.com/home/brain-spinal-cord-and-nerve-disorders/autonomic-nervous-system-disorders/overview-of-the-autonomic-nervous-system)

 

As you can see by the above definition, the human body is in large part controlled by autonomic or automatic nerves, the kind that function without your control. The question that has arisen throughout the years in chiropractic is, “Can the chiropractic spinal adjustment have an effect on those nerves and with that, can disease process or pathology be influenced? The question of the chiropractic spinal adjustment positively effecting pain through the brain connection (central nervous system) has already been conclusively established.

 

As reported these authors in 2015, the chiropractic adjustment produces direct and measureable effects on the central nervous system across multiple regions which is responsible for the processing of emotion (cingulate cortex, aka limbic cortex) and the insular cortex, which is also responsible for regulating emotion as well as homeostasis. The motor cortex is involved in the planning and execution of voluntary movements, the amygdala’s primary function is memory and decision making (also part of the limbic system), the somatosensory cortex is involved in processing the sense of touch (remember the homunculus) and, finally, the periaqueductal gray is responsible for descending pain modulation (the brain regulating the processing of painful stimuli).

 

The next question then becomes, “Can the chiropractic adjustment cause the central nervous system to effectuate changes in those systems that regulate our organs through the autonomic nervous system?” When studying the autonomic nervous system, according to Welch and Boone (2008), “Because of the proximity of the upper cervical vertebrae to the brainstem, parasympathetic influences dominate these segmental levels; and therefore, a cervical adjustment could likely result in a parasympathetic response (slowing down of heart beat, lowering of BP, constriction of pupils). In those spinal regions where sympathetic innervation is substantial (upper thoracic and upper lumbar), a chiropractic adjustment could elicit a sympathetic response (stimulation of heart beat, raising of BP, dilation of pupils” (p. 87).

In this study, the findings after a cervical adjustment were linked to an increase in parasympathetic dominance. This was apparent when observing the changes occurring in pre- to post-adjustment HRV [heart rate variability] total power that reflects the balance between LF [low frequency] (ie, sympathetic tone) and HF [high frequency] (e, parasympathetic tone). It was evident that, in each patient, the pre- to post-adjustment decrease in LF/HF [low frequency/high frequency] was due to either a larger increase in parasympathetic activity or a lesser decrease in parasympathetic activity when compared with sympathetic activity. These findings are consistent with other studies that have linked upper cervical chiropractic adjustments to parasympathetic mediated regulatory systems.

Among those individuals receiving thoracic adjustments, the findings indicated that the responses were sympathetic in nature…Heart rate variability data revealed that total power, which is a measure of total autonomic signal, decreased substantially post-adjustment. When considering the balance between parasympathetic/sympathetic activity (LH/HF) [low frequency/ high frequency], it was evident that, in each patient, the pre- to post-adjustment decrease in LH/HF [low frequency/high frequency] was due to either a larger increase in sympathetic activity or a lesser decrease in sympathetic activity when compared with parasympathetic activity. These findings are consistent with other studies that have linked thoracic chiropractic adjustments to sympathetic mediated regulatory systems.” (p. 90-91).

Budgell and Hirano (2001) reported, “…authentic spinal manipulation was associated with changes in heart rate and heart-rate variability, which could not be duplicated with sham manipulation. The distinguishing features of the authentic manipulation are the high-velocity, low-amplitude thrust applied to and resulting in cavitation of an intervertebral joint. The authentic manipulative procedure employed in this study has been widely used in clinical trials of the effects of spinal manipulation on headache and biomechanical disorders of the neck” (p. 98).

 

Budgell and Polus reported in The Journal of Manipulative and Physiological Therapeutics (2006) that chiropractic adjustments of the thoracic spine were associated with significant heart rate values and influenced the autonomic output of the heart, meaning that the heart rate generally lowers with the chiropractic adjustment because of the shift in the neurological communication of the autonomic nervous system (to the parasympathetic nerves) causing the heart to slow or normalize. This study by Budgell and Polus offers potential answers to many as to why patients' heart rates spike for no apparent reason. The spine, although a great influence to the nervous system, has often been overlooked in the clinical arena as the prime cause for cardiac issues. The authors of this article want to emphasize that chiropractic care has a positive effect for many conditions, including cardiac, and should be consideredin conjunction with necessary treatment from all other health care specialists, as clinically indicated, in order to make a conclusive diagnosis to rule out life-threatening illnesses.

 

Ward, Coats, Tyer, Weigand, and Williams (2013), found that in an upper thoracic manipulation (mobilization) of the thoracic spine, “There was no statistically significant or clinically relevant difference found between groups for any of the cardiovascular measurements at any time point” (p. 107). This study would appear to overturn the previous findings of autonomic change as a sequella to a chiropractic adjustment. However, if you look carefully at the study limitations, you will realize that this study strongly suggests that chiropractic has perhaps the “only solution” to effect autonomic changes. 

 

Ward et al. (2013) included the following points under the heading “Study Limitations.” “The population that we sampled was composed of chiropractic students who regularly receive spinal manipulation. It is possible that the general public who do not receive regular chiropractic manipulation may react differently than individuals who receive spinal manipulation more frequently. In our design, we did not attempt to exclusively manipulate fixated segments of the upper thoracic spine. It may be argued that, if a patient had a painful fixated spinal segment that was manipulated, the results of this study may have been different…Last, our study participants were young and relatively normotensive” (p. 108-109).

 

The limitations also suggest that the treatment rendered was a joint mobilization, similar to what physical therapy is designed to do and not a chiropractic spinal adjustment. There were no fixations, and a as result, no negative neurological sequelae. In addition, this study was performed on young, healthy chiropractic students who have been getting chiropractic adjustments on a regular basis, probably removing any aberrant neurological issues prior to this study. It is highly unlikely there were significant biomechanical alterations in this study population again, due to age and frequency of chiropractic care. 

 

 

 

Additionally, the lead author of this article, over the course of 5 years in private practice, did pre- and post-extremity Doppler studies on a “sick” population that was not receiving any chiropractic care and observed the same results as Welch and Boone stated above. In addition, Ward et al. (2013) appear to have validated why a chiropractic adjustment on a historical “chiropractic subluxated” region must be “adjusted chiropractically” to have the benefit of autonomic changes. It is the chiropractic “diagnosis” of the functional spinal biomechanical abnormality that is the expertise of the doctor of chiropractic, not simply the act of the therapeutic adjustment to treat neuromuscular negatively affected regions and not simply mobilize segments. 

 

Chronic pain patients were studied by Kang, Chen, Chen and Jaw (2012). Their focus was on the following: sleep disorders, pain scales, pressure pain thresholds, disability indexes and heart rate variability analysis. Although these authors have touched on many areas that have been reported to have a positive influence by chiropractic care, for the purpose of this review we are focusing on heart rate variability. Kang et al. (2012) reported, “Heart rate variability (HRV) analysis, initially developed to evaluate the prognosis of cardiac diseases, has been utilized to assess autonomic functions in chronic pain conditions…The autonomic nervous system plays an important role in the pathogenesis of chronic muscle pain. The autonomic dysfunction in fibromyalgia is characterized by persistent autonomic hyperactivity at rest and hypo-reactivity during stress. In addition, HRV analysis in patients with chronic low back pain has shown that a greater level of disability is associated with a lower HRV” (p. 797). They continued, “Our results are similar to a previous study demonstrating that in participants with chronic low back pain, decreased HRV is significantly associated with a higher index of perceived disability but not with pain intensity itself…It has long been postulated that autonomic regulatory dysfunction is involved in the pathogenesis of several chronic pain conditions” (Kang et al., 2012, p. 801). They concluded, “…reduced HRV was associated with subjective disability in patients with chronic neck pain” (Kang et al., 2012, p. 802).

 

Kang et al. (2012) stated, “The pathologic mechanism of chronic neck pain is still not understood and is a multifactorial disease… Chronic neck pain is difficult to treat. Treatment options must include multimodal, interventions combining physical agents, oral medications, local injections, and adequate exercise” (p. 800). This prevailing message perpetuates previous reports in the literature and further solidifies that allopathy has no solutions for mechanical cervical spine chronic pain. Apkarian ET. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) Apkarian, Hashmi, and Baliki (2011) reported “Clinically, the most relevant conditions in which human brain imaging can have a substantial impact are chronic conditions, as they remain most poorly understood and minimally treatable by existing [medical] therapies” (p. S53).” In essence, what these authors are stating is that although many people suffer from chronic spine pain, very few of them are actually diagnosed with a “medical condition,” aka an “anatomical” lesion.  The chiropractic profession has long professed the lesion is actually functional and based on aberrant spinal biomechanics (subluxation) or mechanical spine pain (no fracture, tumor or infection). That, in fact, is what places chiropractic in the unique role in the diagnosis and management of biomechanical spine pain.  When we lead with “chiropractic spinal assessment,” we have no competition in medicine or rehabilitation.

 

 

Peterson, Bolton, and Humphreys (2012) “…investigate[d] outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment” (p. 525). In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes” (Peterson et al., 2012, p. 526). “Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (Peterson et al., 2012, p. 525). “At 3 months…69% of patients with chronic pain stated that they were either much better or better” (Peterson et al., 2012, p. 538). This is unlikely to be due to the natural history of low back pain because these patients have already passed the period when natural history occurs.

 

 

A study by Tamcan et al. (2010) was the only population-based study of the so called “natural history” of lower back pain and the authors found the “natural history” of chronic lower back pain was not ending in resolution of symptoms, but instead they documented patients moving “in and out” of a level of pain they could tolerate.   Based on the only population-based study of chronic lower back pain, the idea that the natural history of lower back pain ends with a resolution of symptoms is completely false and something that is merely perpetuated by our present healthcare system.

Lawrence et al. (2008) reported, “Existing research evidence regarding the usefulness of spinal adjusting… indicates the following…1. As much or more evidence exists for the use of SMT [spinal manipulation] to reduce symptoms and improve function in patients with chronic LBP as for use in acute and subacute LBP” (p. 670). “…the manual therapy group showed significantly greater improvements than did the exercise group for all outcomes. Results were consistent for both the short-term and the long-term” (Lawrence et al., 2008, p. 663). We see in this study, as in others, that biomechanical alterations in the human spine, aka spinal subluxation, must be diagnosed and treated. They cannot simply be exercised or mobilized away.  This is the unique domain of the doctor of chiropractic. 

 

Dunn, Green, Formolo, and Chicoine  (2011) reported, “The clinical outcomes achieved for this sample should be considered within the context of this veteran patient base, which is typically represented by older, white males with multiple comorbidities. A high percentage of overall service-connected disability was noted, with only a small percentage associated with the low back region. Considerable psychological comorbidity was found, with a high prevalence of PTSD [post-traumatic stress disorder] and depression diagnoses. PTSD and chronic pain tend to co-occur and may interact in a way that can negatively affect either disorder. A previous retrospective study of chiropractic management for neck and back pain demonstrated less improvement among those with PTSD. These points are significant because severe comorbidities and psychosocial factors lessen the likelihood of obtaining positive outcomes with conservative measures, including SMT [chiropractic adjustments], for chronic LBP [low back pain]. Mean percentages of clinical improvement exceeded the MCID [minimum clinically important difference], despite the levels of service-connected disability and comorbidity among this sample of veteran patients” (pg. 930). They went on to conclude that in spite of significant comorbidities that historically compromise positive results, 60.2% of patients met or exceeded the minimum clinically important difference for improvement.

 

The above studies verify that allopathy cannot conclude an accurate diagnosis for chronic back or neck pain while chiropractic reportedly helps resolve these issues 69% of the time as reported in the literature. The authors of this paper have currently practiced for a combined 52 years and can confirm, based upon our observations in the private practice setting, that the percentage is closer to 95% for resolving mechanical spine pain. Although this is an observation and could appear unusually high, that is an accurate accounting of both our experience and that of many other practicing chiropractors who we have informally polled. 

 

Therefore, the above studies, excluding Ward et al. (2013), strongly, suggest that the autonomic nervous system has a direct cause and effect relationship with the chiropractic spinal adjustment and verifies another central nervous system connection. They also verify that chiropractic has demonstrated solutions in today’s healthcare system that can help prevent autonomic aberrant effects of chronic pain on heart rate variability and other related disabilities where allopathy has failed.  

 

When we consider disease care, it is critical to consider the autonomic connection and the effect of chiropractic care as that is part of the equation for scientifically validating many observational conclusions that doctors of chiropractic have realized in their offices over the last century. In addition, this and other central nervous system connection show promising results as the foundation for determining how organs and disease react to the chiropractic spinal adjustment. Although the literature does confirm this hypothesis, it is based on millions getting well observationally and science simply needed time to catch up. Although we now are beginning to realize many answers there is still quite a way to go in our understanding… but we are just that much closer with understating more of the adjustment-central nervous system-autonomic nervous system-disease connection.

 

 

References:

1. Low, P. (2015). Overview of the autonomic nervous system. Merck Manual Consumer Version, Retrieved from http://www.merckmanuals.com/home/brain-spinal-cord-and-nerve-disorders/autonomic-nervous-system-disorders/overview-of-the-autonomic-nervous-system

2. Studin, M., & Owens W. (2015). Research proves chiropractic adjustments effect emotions, learning, memory, consciousness, motivation, homeostasis, perception, motor control, self-awareness, cognitive function, voluntary movement, decision making, touch and pain: BRAIN CONNECTION. US Chiropractic Directory. Retrieved from http://uschirodirectory.com/research/item/744-research-proves-chiropractic-adjustments-effect-emotions,-learning,-memory,-consciousness,-motivation,-homeostasis,-perception,-motor-control,-self-awareness,-cognitive-function,-voluntary-movement,-decision-making,-touch-and-pain.html

3. Welch, A., & Boone, R. (2008). Sympathetic and parasympathetic responses to specific diversified adjustments to chiropractic vertebral subluxations of the cervical and thoracic spine. Journal of Chiropractic Medicine, 7(3), 86-93.

4. Budgell, B., & Hirano, F. (2001). Innocuous mechanical stimulation of the neck and alteration in heart-rate variability in healthy young adults. Autonomic Neuroscience: Basic and Clinical 91(1-2), 96-99.

5. Budgell, B., & Polus, B. (2006). The effects of thoracic manipulation on heart rate variability: A controlled crossover trial.Journal of Manipulative and Physiological Therapeutics, 29(8), 603-610.

6. Ward, J., Coats J., Tyer, K., Weigand, S., Williams, G. (2013). Immediate effects of anterior upper thoracic spine manipulation on cardiovascular response. Journal of Manipulative and Physiological Therapeutics, 36(2), 101-110.

7 Kang, J. H., Chen, H. S., Chen, S. C., & Jaw, F. S. (2012). Disability in patients with chronic neck pain, Heart rate variability analysis and cluster analysis. Clinical Journal of Pain, 28(9), 797-803.

8. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415

Apkarian, A. V., Hashmi, J. A., & Baliki, M. N. (2011). Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain, 152(Suppl. 3), S49-S64.

9. Peterson, C. K., Bolton, J., & Humphreys, B. K. (2012). Predictors of improvement in patients with acute and chronic low back pain undergoing chiropractic treatment. Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533.

10. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain, 150(3), 451-457.

11. Lawrence, D. J., Meeker, W., Branson, R., Bronford, G., Cates, J. R., Haas, M., Hawk, C. (2008). Chiropractic management of low back pain and low back-related leg complaints: A literature synthesis. Journal of Manipulative and Physiological Therapeutics, 31(9), 659-674.

12.  Dunn, A. S., Green, B. N., Formolo, L. R., & Chicoine, D. (2011). Retrospective case series of clinical outcomes associated with chiropractic management for veterans with low back pain. Journal of Rehabilitation Research & Development, 48(8), 927-934.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Chiropractic vs. Medicine:

Who is More Cost Effective

& Renders Better Outcomes for Spine?

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

When we consider mechanical spine issues, we need to consider problems exclusive of fracture, tumor or infection. According to Houweling Et. Al. (2015) back pain effects 43% of the population over the course of a year. In addition, 33% of that group reported that their symptoms led to reduced productivity at work. In Switzerland, this accounted for 3% of their gross domestic products and equates to $14 Billion in US dollars. Chiropractic’s forte` and focus historically has been mechanical spine issues and when considering who the first provider that should be consulted, one needs to examine the scientific evidence based upon outcomes so that rhetoric has no place in utilization and the facts control the argument and direction of the patient.

Simply put, where should a patient go first because it has been proven conclusively that it is the best place to get better. From an insurance carrier and legislative perspective, the question goes one step further and examines the cost of care and which is the best solution in a cost-effective care-path realizing that often the government is the insurer or risk taker and even private carriers have a fiduciary responsibility to their stockholders to ensure a profitable return, while offering the best possible solutions for their insureds.  

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

Houweling Et. Al (2015) concluded “Patients who initially consulted with MDs were significantly less likely to be satisfied with the care received and the results of care compared with those who initially consulted DCs” (p. 480) and Adjusted mean costs per patient were significantly lower in patients initiating care with DCs compared with those initiating care with MDs. (p.480) “The findings of this study pertaining to patient satisfaction were in line with previous research comparing chiropractic care to medical care for back pain, which found that chiropractic patients are typically more satisfied with the services received than medical patients.” (p.481)

Houweling Et. Al (2015) continued “Mean total spinal, hip, and shoulder pain-related health care costs per patient during the 4-month study period were approximately 40% lower in patients initially consulting DCs compared with those initially consulting MDs. The reason for this difference was a lower use of health care services other than first-contact care in patients initially consulting DCs compared with those initially consulting MDs. Previous observational studies comparing medical and chiropractic care in terms of health care costs per patient have shown opposing results. Two studies conducted in the United States found that patients with low back pain treated in chiropractic clinics incurred higher costs than patients treated in medical clinics. One possible reason for these opposing findings is that differences were brought about by the methods of determining costs. In the studies conducted in the United States, costs were determined by chart audit, whereas in the present study, cost determinations were based on an insurance database review of all health care services used for the conditions investigated including the cost of visits to other health care providers.” Pg. 481

Perhaps the most telling point of Houweling Et. Al (2015) results were “Restrictive models of care in which patients are required to contact a medical provider before consulting a chiropractic provider may be counterproductive for patients experiencing the musculoskeletal conditions investigated and possibly others. In addition to potentially reducing health care costs, direct access to chiropractic care may ease the workload on MDs, particularly in areas with poor medical coverage and hence enabling them to focus on complex cases. The minority of patients with complex health problems initially consulting a chiropractic provider would be referred to, or co-managed with, a medical provider to provide optimal care. (p.481)

The above model not only suggests, but verifies that chiropractic should be the first choice or the primary spine care provider freeing up an already overburdened medical primary care provider’s office where they are not qualified to manage mechanical spine issues as reported above. This also helps resolve some of the issues in more rural regions where there is a shortage of primary care medical providers and positions the public to realize better outcomes and serves the insurers by ensuring lower costs.

References:

  1. Houweling, T, Braga A., Hausheer T., Vogelsang M., Peterson C., Humphreys K. (2015) First-Contact Care with a Medical vs. Chiropractic Provider After Consultation with a Swiss Telemedicine Provider: Comparison of Outcomes, Patient Satisfaction, and Health Care Costs in Spinal, Hip, and Shoulder Pain Patients, Journal of Manipulative and Physiologic Therapeutics, 38(7), 477-483
  2. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  3. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic, Chronic Back Pain and Brain Shrinkage:

 

A better understanding of Alzheimer’s, Dementia, Schizophrenia, Depression and Cognitive Disorders and Chiropractic’s Role

 

A Review of the Mechanisms

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

Frank Zolli DC, EdD

 

 

Reference: Studin M., Owens W., Zolli F., (2015) Chiropractic, Chronic Back Pain and Brain Shrinkage:A better understanding of Alzheimer’s, Dementia, Schizophrenia, Depression and Cognitive Disorders and Chiropractic’s Role, A Literature Review of the Mechanisms, The American Chiropractor, 37(10) 36-38, 4042, 44-45

 

Since its inception in 1895, Chiropractic has been focused on the spine and its role in the total health and function of the human body.  Throughout its history, the profession has moved from a “bone on nerve” model to a “biomechanical/functional” model however as we evolve (through scientific findings) in our understanding of the true nature of the chiropractic principles, we now conclusively know that chiropractic results are based on the central nervous system and the detrimental role of spinal dysfuntion in the maintenance of homeostasis and “dis-ease” in the human body.  This article bridges the gap between the foundational chiropractic principles taught by the Palmers and their predecessors and today’s breakthrough findings and the correlation between unchecked spinal dysfunction AKA chronic spine pain and its effect on the brain. 

 

 

Peterson ET. AL. (2012) reported, “The … prevalence of low back pain is stated to be between 15% and 30%, the 1-year period prevalence between 15% and 45%, and a life-time prevalence of 50% to 80%” (pg. 525). While acute pain is a normal short-lived unpleasant sensation triggered in the nervous system to alert you to possible injury with a reflexive desire to avoid additional injury, chronic pain is different. Chronic pain persists and fundamentally changes the patient’s interaction with their environment. In chronic pain it is well documented that aberrant signals keep firing in the nervous system for weeks, months, even years.1 Baliki Et. AL. (2008) stated “Pain is considered chronic when it lasts longer than 6 months after the healing of the original injury. Chronic pain patients suffer from more than pain, they experience depression, anxiety, sleep disturbances and decision making abnormalities that also significantly diminish their quality of life” (pg. 1398). Chronic pain patients also have shown to have changes in brain function in sufferers with Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder giving further insight into disease states. In addition, chronic pain has a cause and effect on the morphology of the spinal cord and the brain in particular resulting in a process termed “linear shrinkage”, which has been suggested to cause ancillary negative neurological sequella.  

 

Apkarian Et. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) Apkarian Et. AL. (2011) reported “Clinically, the most relevant conditions in which human brain imaging can have a substantial impact are chronic conditions, as they remain most poorly understood and minimally treatable by existing (author’s note: medical) therapies” (pg. S53). So in essence what these authors are stating is although many people suffer from chronic spine pain, very few of them are actually diagnosed with a “medical condition” AKA an “anatomical” lesion.  The chiropractic profession has long professed the lesion is actually functional and based on aberrant spinal biomechanics [Subluxation]. 

 

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal care paths with resultant negative sequella of chronic back pain.  Alkarian’s conclusion was querying allopathic doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi ET. Al. (2005) reported regarding medical providers, “(92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (pg. 167).

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

 

Now that we have a general idea of why current musculoskeletal and spine care paths are failing, let’s examine what the negative effects are with a focus on what happens to the central nervous system when a patient is suffering from chronic pain.  The following paragraphs describe what happens to the brain as a result of chronic pain and then offers solutions based upon evidenced based studies.

 

Chronic Pain Affecting Brain Activity at Rest

 

Baliki ET. Al (2008) reported “Recent studies have demonstrated that chronic pain harms cortical areas unrelated to pain, long-term pain alters the functional connectivity of cortical regions known to be active at rest, i.e., the components of the “default mode network” (DMN). This DMN is marked by balanced positive and negative correlations between activity in component brain regions. In several disorders, however this balance is disrupted. Studying with fMRI [functional MRI] a group of chronic back pain patients and healthy controls while executing a simple visual attention task, we discovered that chronic back pain patients, despite performing the task equally well as controls, displayed reduced deactivation in several key default mode network regions. These findings demonstrate that chronic pain has a widespread impact on overall brain function, and suggest that disruptions of the default mode network may underlie the cognitive and behavioral impairments accompanying chronic pain.” (pg. 1398)

 

“The existence of a resting state in which the brain remained active in an organized manner, is called the ‘default mode of brain function. The regions exhibiting a decrease in activity during task performance are the component members of the “default-mode network” (DMN), which in concerted action maintain the brain resting state. Recent studies have already demonstrated that the brain default mode network is disrupted in autism, Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder, suggesting that the study of brain resting activity can be useful to understand disease states as well as potentially provide diagnostic information.”  (pg. 1398)  This is important since for the first time we are starting to see a published correlation between spinal function, chronic pain and central nervous system changes.  This is what our founders have observed yet were unable to prove.

 

“Thus, the alterations in the patient’s brain at ‘rest’ can result in a different default mode network organization. In turn, potential changes in the default-mode network activity could be related to symptoms (other than pain) commonly exhibited by chronic pain patients, including depression and anxiety, sleep disturbances, and decision-making abnormalities, which also significantly diminish their quality of life… chronic pain patients display a dramatic alteration in several key default-mode network regions, suggesting that chronic pain has a widespread impact on overall brain function” (pg. 1398).  This information is pointing to the fact that a doctor of chiropractic should be involved in the triage and treatment of these patients and part of a long term spinal care program. 

 

Baliki ET. Al (2008) continued “Consistent with extensive earlier work examining visuospatial attention tasks, dominant activations were located in posterior parietal and lateral prefrontal cortices, whereas deactivations occurred mainly within Pre-Frontal Cortex and Posterior Cingulate/Cuneate Cortexes. Although activations in chronic back pain patients’ and controls’ brains were similar, chronic back pain patients exhibited significantly less deactivations than healthy subjects in Pre-Frontal Cortex, amygdala, and Posterior Cingulate/Cuneate Cortexes.  The focus was on identifying differences in the way chronic back pain patients’ brains process information not related to pain. This is the first study demonstrating that chronic back pain patients exhibit severe alterations in the functional connectivity between brain regions implicated in the default mode network. It seems that enduring pain for a long time affects brain function in response to even minimally demanding attention tasks completely unrelated to pain. Furthermore, the fact that the observed task performance, compared with healthy subjects, is unaffected, whereas the brain activity is dramatically different, raises the question of how other behaviors are impaired by the altered brain activity” (pg. 1399).

 

“However, the disruption of functional connectivity observed here with increased chronic back pain duration may be related to the earlier observation of brain atrophy increasing with pain duration also in chronic back pain patients. Patient’s exhibit increased pre-frontal cortex activity in relation to spontaneous pain, in addition to dorsolateral prefrontal cortex atrophy. Therefore, the decreased deactivations described here may be related to the dorsolateral pre-frontal cortex /pre-frontal cortex mutual inhibitory interactions perturbed with time. If that is the case, it will support the idea of a plastic, time-dependent, reorganization of the brain as patients continue to suffer from chronic back pain.

 

Mechanistically, the early stages of this cortical reorganization may be driven by peripheral and spinal cord events, such as those that have been documented in animal models of chronic pain, whereas later events may be related to coping strategies necessary for living with unrelenting pain. It is important to recognize that transient but repetitive functional alterations can lead to more permanent changes. Accordingly, long term interference with normal activity may eventually initiate plastic changes that could alter irreversibly the stability and subsequently the conformation of the resting state networks” (pg. 1401).

 

 

Brain Region

Function

Cingulate Cortex

Emotions, learning, motivation, memory

Insular Cortex

Consciousness, homeostasis, perception, motor control, self-awareness, cognitive function

Motor Cortex

Voluntary movements

Amygdala Cortex

Memory, decision making, emotional reactions

Somatosensory Cortex

Proprio and mechano-reception, touch, temperature, pain of the skin, epithelial, skeletal muscle, bones, joints, internal organs and cardiovascular systems

Periaqueductal Gray

Ascending and descending spinothalamtic tracts carrying pain and temperature fibers

 

 

 

 

 

 

 

 

 

 

 

 

THALAMUS

 

 

 

Chronic Pain Causing Brain “Shrinkage”

 

Apkarian ET. Al (2004) reported “Chronic back pain patients were divided into neuropathic, exhibiting pain because of sciatic nerve damage, and non-neuropathic groups. Patients with chronic back pain showed 5-11% less neocortical gray matter volume than control subjects. The magnitude of this decrease is equivalent to the gray matter volume lost in 10-20 years of normal aging. The decreased volume was related to pain duration, indicating a 1.3 cm3loss of gray matter for every year of chronic pain. Gray matter density was reduced in bilateral dorsolateral prefrontal cortex and right thalamus and was strongly related to pain characteristics in a pattern distinct for neuropathic and non-neuropathic chronic back pain. Our results imply that chronic back pain is accompanied by brain atrophy and suggest that the pathophysiology of chronic pain includes thalamocortical processes.

 

It is assumed that the cerebral cortex passively reflects spinal changes and reverts to its normal state after cessation of chronic pain. Our studies show that chronic back pain (sustained for >6 months) is accompanied by abnormal brain chemistry, mainly a reduction in theN-acetyl-aspartate-creatine ratio in the prefrontal cortex, implying neuronal loss or dysfunction in this region and reduced cognitive abilities on a task that implies abnormal prefrontal processing” (pg. 10410).

 

Apkarian ET. Al (2004) continued “At the whole-brain level, this reduction is related to pain duration, regionally depends on multiple pain-related characteristics, and is more severe in the neuropathic subtype. Therefore, these data present strong evidence that the pathophysiology of chronic pain includes cortical processes, and the observed changes likely constitute the physical substrate of the cognitive and behavioral properties of chronic pain” (pg. 10411).

 

“Thus, regional gray matter changes are strongly and specifically related to pain characteristics, and this pattern is opposite for neuropathic compared with non-neuropathic types. This dissociation is consistent with extensive clinical data showing that neuropathic pain conditions are more debilitating and have a stronger negative affect, which may be directly attributable to the larger decrease in gray matter density that we observe in the dorso-lateral pre-frontal cortex (DLPFC) of neuropathic chronic back pain patients.  Moreover, only 18% of whole-brain gray matter variance could be explained by pain duration. Therefore, a large portion of the whole-brain atrophy in chronic back pain cannot be accounted for by the measured pain characteristics, implying that there may be genetic and experiential predispositions contributing to the observed atrophy. In the DLPFC, a larger proportion of the variance could be explained by pain characteristics (40% for neuropathic chronic back pain; 80%for non- neuropathic chronic back pain), implying a tighter relationship between regional brain atrophy and perceived pain. Therefore, we suggest that the pattern of brain atrophy is directly related to the perceptual and behavioral properties of neuropathic chronic back pain.”

 

The observed regional pattern of atrophy is distinct from that seen in chronic depression or anxiety and shows a minimal relationship with anxiety and depression traits. Thus, it seems to be specific to chronic pain, especially because the regions showing atrophy, the thalamus and DLPFC, participate in pain perception. The DLPFC is activated in acute pain, with responses that do not code stimulus intensity. Recent evidence suggests that the DLPFC exerts “top-down” inhibition on orbitofrontal activity, limiting the magnitude of perceived pain. Thus, DLPFC atrophy may lead to a disruption of its control over orbitofrontal activity, which in turn is critical in the perception of negative affect in general and particularly in pain states. Thalamic atrophy in chronic back pain is important, because it is a major source of nociceptive inputs to the cortex and damage to this region may be a reason for the generalized sensory abnormalities commonly associated with chronic pain” (pg. 10413).

 

“The dorsal anterior cingulate is shown to be specifically involved in pain affect in normal subjects and exhibits decreased nociceptive signaling in various chronic pain states, which may again be caused by thalamic atrophy because the anterior thalamus is a primary input to the anterior cingulate. Therefore, we suggest that regional atrophy dictates the brain activity observed in chronic pain, and it may explain the transition from acute to chronic pain by shifting brain activity related to pain affect away from the anterior cingulate to orbitofrontal cortex.”

 

“It is possible that some of the observed decreased gray matter reflects tissue shrinkage [changes in extracellular space and microvascular volume may cause tissue shrinkage without substantially impacting neuronal properties], implying that proper treatment would reverse this portion of the decreased brain gray matter. The atrophy may be also attributable to more irreversible processes, such as neurodegeneration, which we favor because the main brain region involved (the DLPFC) also exhibits decreasedN-acetyl-aspartate, and decreasedN-acetyl-aspartate has been observed in most neurodegenerative conditions. Recent evidence also suggests that after nerve injury, some components of pain behavior are a consequence of hyperactivity of spinal cord microglia, and a histological study has shown a reduction in glial numbers in the cortex in major depressive disorder and bipolar disorder” (pg. 10414).

This article suggests that there is a reversible component in brain atrophy with the resolution of the chronic back pain, with strong evidence that there are some tissue structures that will be permanently damaged should the chronic pain go beyond the defined 6 months.  Clearly there are many different professions that handle the anatomical components of spine pain such as fracture, infection, disc herniation or tumor.  There is only one profession that has the education and training to treat the aberrant spinal biomechanics; chiropractic.  Since chiropractors are trained in treating/managing/triaging the anatomical lesions while also being the best suited to treat the biomechanical component, the evidence verifies that  the first contact for spine pain be a doctor of chiropractic who is also trained in differential diagnosis of underlying pathology. .

 

Brain Regions Effected

 

Apkarian ET. AL (2011) reported “The surprise was that the brain region best reflecting high magnitude of back pain was localized to the medial prefrontal cortex, extending into anterior cingulate cortex, a region not anticipated by acute pain studies. Additionally, brain areas observed for acute pain, like portions of the insula and mid- anterior cingulate cortex were only active transiently and only when the back pain magnitude was on the increase. These results are exciting because, for the first time, we are able to observe brain activity reflecting the subjective perception of the pain that chronic back pain patients come to the clinic to complain. We interpret the transient activity as a nociceptive signal from the periphery, which then is converted into a sustained emotional suffering signal in medial prefrontal cortex (pg. S54).

 

“Thus we can assert that, at least in this group of chronic pain patients, different brain areas encode the perceived magnitude for distinct types of pain. The prevalent expectation for brain activity in chronic pain is a sustained or enhanced activation of the brain areas already identified for acute pain. This view is partly implied by the chronic pain definition and by notions of specificity theory or labeled line theory of pain (where supraspinal organization and representation of pain is assumed to be through fixed and immutable routes). This is exactly what we donotsee. Instead these results imply that functional anatomy or physiology or some combination of both have changed in the brain of chronic back pain patients. It is also important to remember that the close relationships between fundamental properties of back pain and activity in medial prefrontal cortex and insula are correlational, and that both medial prefrontal cortex and insula respond to a long list of cognitive and emotional states (pg. S55). The morphological studies show that the brain structure undergoes changes at multiple spatial and temporal scales, which are for the most part specific to the type of chronic pain studied. That some of these changes are reversible by cessation of chronic pain speaks to the specificity of the processes and also demonstrate that chronic pain may in fact by used as a unique tool with which the dynamics of brain plasticity can be studied at multiple spatial and temporal scales” (pg. S56).

 

Chiropractic as a Solution for Chronic Back Pain

 

 

Peterson ET. AL. (2012) reported “investigate outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment. In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes. Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (pg. 525). “At 3 months, 69% of patients with chronic pain stated that they were either much better or better. This is unlikely to be due to the natural history of LBP because these patients have already passed the period when natural history occurs “(pg. 531).  A study by Tamcan et al (2010) was the only population based study of the so called “natural history” of lower back pain and the authors found the “natural history” of chronic lower back pain was not ending in resolution of symptoms but instead they documented patients moving “in and out” of a level of pain they could tolerate.   Based on the only population-based study of chronic lower back pain, the idea that the “natural history” of lower back pain ends with resolution of symptoms is a complete myth and one that is perpetuated by our present healthcare system.

 

 

Lawrence ET. AL (2008) reported “Existing research evidence regarding the usefulness of spinal adjusting… indicates the following, as much or more evidence exists for the use of SMT [spinal manipulation] to reduce symptoms and improve function in patients with chronic LBP as for use in acute and subacute LBP. The manual therapy group showed significantly greater improvements than did the exercise group for all outcomes. Results were consistent for both the short-term and the long-term” (pg. 670).

 

 

Dunn ET. AL. (2011) reported “The clinical outcomes achieved for this sample should be considered within the context of this veteran patient base, which is typically represented by older, white males with multiple comorbidities. A high percentage of overall service-connected disability was noted, with only a small percentage associated with the low back region. Considerable psychological comorbidity was found, with a high prevalence of PTSD (post-traumatic stress disorder) and depression diagnoses. PTSD and chronic pain tend to co-occur and may interact in a way that can negatively affect either disorder. A previous retrospective study of chiropractic management for neck and back pain demonstrated less improvement among those with PTSD. These points are significant because severe comorbidities and psychosocial factors lessen the likelihood of obtaining positive outcomes with conservative measures, including [chiropractic adjustments], for chronic low back pain. Mean percentages of clinical improvement exceeded the minimum clinically important difference, despite the levels of service-connected disability and comorbidity among this sample of veteran patients” (pg. 930). They went on to conclude that in spite of significant comorbidities that historically compromise positive results, 60.2% of patients met or exceeded the minimum clinically important difference for improvement (pg. 927).

 

Conclusion

 

Chronic pain as defined by that which has last for 6 months or longer which causes significant brain aberration in both morphology (size) and function.  The  literature suggests that this could be the precursor for many diseases as sequella of the human body’s natural reaction to prolonged pain.   Chronic back pain is one of the leading causes of chronic pain and medicine has little to no training or solutions as reported in the literature. Conversely, chiropractic has significant training and has been proven in “blinded” studies to have significant positive outcomes even in significantly adverse condition to help resolve chronic pain. As a result, the negative sequella on the brain of chronic pain, including shrinkage of the brain can be reversed through chiropractic care as the evidence has verified that once the chronic pain has resolved, the brain has the ability to return to its normal size and regain much function.

 

 

Although this evidence is strong, more research is needed and this further sets the foundation for understanding how chiropractic directly effects diseases in the human body. In addition, this also takes the chiropractic profession to the next level of understanding how and why a chiropractic adjustment works.  

 

 

References:

  1. National Institute of Neurological Disorders and Stroke, NINDS Chronic Pain Information Page (July 2015), retrieved from: http://www.ninds.nih.gov/disorders/chronic_pain/chronic_pain.htm
  2. Baliki N., Geha P., Apkarian A., Chialvo D., (2008) Beyond Feeling: Chronic Pain Hurts the Brain, disrupting the Default-Mode Network Dynamics, Journal of Neurosciences 28(6) 1398-1403
  3. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415
  4. Apkarian A., Hashmi J., Baliki M., (2011) Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain, Pain 152, S49-S54
  5. Raissi G., Mansoon K., Madani P., Rayegani S., (2006) Survey of General Practitioners’ attitudes Toward Physical Medicine and Rehabilitation, International Journal of Rehabilitation Research 26: 167-170
  6. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  7. Schmale G. (2005) More Evidence of Educational Inadequacies in Musculoskeletal Medicine 437, 251-259
  8. Peterson C., Bolton J., Humphreys K., (2012) Predictors of Improvement in Patients With Acute and Chronic Low Back Pain Undergoing Chiropractic Treatment, Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533
  9. Lawrence, D., Meeker W., Branson R., Bronford G., Cates J., Haas M., Haneline M., Micozzi M., Updyke W., Mootz R., Triano J., Hawk C., (2008) chiropractic management of low back pain and low back-related leg complaints: a literature synthesis, Journal of Manipulative and Physiological Therapeutics, 31(9) 659-674
  10. Dunn A., Green B., Formolo L., Chicoine D. (2011) Retrospective case series of clinical outcomes associated with chiropractic management for veterans with low back pain, Journal of Rehabilitation Research & Development, 48(8) 927-934
  11. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain, 150(3), 451-457.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

Back Pain: Who Should Be Seen First & WHY

Chiropractor vs. Medical Primary Care Doctor

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Reference: Studin M., Owens W. (2015) Back Pain: Who Should Be Seen First & WHY, Chiropractor vs. Medical Primary Care Doctor, American Chiropractor 37 (9) 50, 52, 54, 56

 

 

 

As Chien and Bajwa(2008)pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

The problems that exist regarding chronic back pain are compounded by an unsuspecting public that historically, initially seeks care from their primary care medical providers who do not have strong grasps on mechanical back pain. According to Apkarian et al. (2004), back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made. In other words, virtually every time a patient goes to see his/her primary care doctor as a result of his/her chronic back pain, the doctor does not know the cause of the problem, yet treats an area that he/she is not equipped to diagnose.  

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal education with resultant negative sequellae of chronic back pain.  The above conclusion was drawn by querying allopathic (medical) doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi, Mansoon, Madani, and Rayegani (2006) reported regarding medical providers. Most respondents (92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (Raissi et al., 2006, p. 167).

 

Day, Yeh, Franko, Ramirez, and Krupat (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine.  Schmale (2005) reported, “…incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 (57/122) have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (p. 251). 

 

With continued evidence of a lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical (subluxation) orientation, the question becomes, “Which profession has the educational basis, training and clinical competence to manage these cases?”  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. It is so important to practice these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be proficient in neuromusculoskeletal evaluation, treatment and management. In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internships.

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral educationas referenced above.

 

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

 

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

 

References:

 

1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411

2. Peterson, C. K., Bolton, J., & Humphreys, B. K. (2012). Predictors of improvement in patients with acute and chronic low back pain undergoing chiropractic treatment. Journal of Manipulative and Physiological Therapeutics, 35(7), 525-533.

3. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences, 28(6) http://www.jneurosci.org/content/28/6/1398.full

 4. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.

5. Raissi, G. R., Mansoon, K., Madani, P., & Rayegani, S. M. (2006). Survey of general practitioners’ attitudes toward physical medicine and rehabilitation. International Journal of Rehabilitation Research, 29(2), 167-170.

6. Day, C. S., Yeh, A. C., Franko, O., Ramirez, M., & Krupat, E. (2007). Musculoskeletal medicine: An assessment of the attitudes of medical students at Harvard Medical School. Academic Medicine, 82(5), 452-457.

7. Schmale, G. A. (2005). More evidence of educational inadequacies in musculoskeletal medicine. Clinical Orthopaedics and Related Research, 437, 251-259.

 8. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.

 9. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic Can Prevent Absenteeism in the Workplace from Chronic Pain

 

  • A Potential Savings of $140 - $159,000,000,000 (billion) in Unnecessary Health Care Expenditure to Federal and Private Insurers
  • A Potential Savings of $52 - $58,000,000,000 (billion) from Absenteeism and Lowered Productivity to the United States Economy

 

 

A report on the scientific literature 


 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

According to Cady (2014) over 100 million Americans experience chronic pain with common painful conditions including back pain, neck pain, headaches/migraines, and arthritis, in addition to other painful conditions such as diabetic peripheral neuropathy, etc...In a large study in 2010, 30.7% of over 27,000 U.S. respondents reported an experience of chronic, recurrent pain of at least a 6-month duration. Half of the respondents with chronic pain noted daily symptoms, with 32% characterizing their pain as severe (≥7 on a scale ranging from 0 to 10). Chronic pain has a broad impact on emotional well-being and health-related quality of life, sleep quality, and social/recreational function.

Peterson ET. AL. (2012) reported, “The … prevalence of low back pain is stated to be between 15% and 30%, the 1-year period prevalence between 15% and 45%, and a life-time prevalence of 50% to 80%” (pg. 525).  Apkarian Et. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) The reference to no definitive diagnosis is reflective of allopathy, or in common terms, the medical community.

 

 

In contrast, Peterson ET. AL. (2012) reported “investigate outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment. In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes. Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (pg. 525). “At 3 months, 69% of patients with chronic pain stated that they were either much better or better. This is unlikely to be due to the natural history of low back pain because these patients have already passed the period when natural history occurs “(pg. 531).  As a note, this author has been caring for chronic back pain sufferers for 34 years and my personal observation is that 90%+ of all patients feel better and have significantly increased function in a short amount of time. However, for the purposes of this article, I will utilize the published 69%.  

 

Cady (2014) wrote “In addition to the pervasive personal suffering associated with this disease, chronic pain has a substantial negative financial impact on the economy. Direct office visits, diagnostic testing, hospital care, and pharmacy costs are only a portion of the picture, with combined medical and pharmacy costs averaging $5,000 annually per individual (Pizzi, 2005). Chronic pain results in a significant economic burden on the healthcare system, with estimated costs ranging from $560 to $635 billion 2010 dollars, more than the annual cost of other priority health conditions including cardiovascular disease, cancer, and diabetes (Gaskin & Richard, 2012). Moreover, the estimated annual costs of the workplace impact of pain range from $299 to $335 billion from absenteeism and reduced productivity (Gaskin & Richard, 2012).” (pg. 1-2)

 

We have already established that 10% of adults suffer from chronic pain and that back pain constitutes 25% of that population and chiropractic helps 69% of chronic sufferers. Therefore if 25% of all chronic pain is back pain and chiropractic helps 69%, then the numbers extrapolate as follows: 

 

Economic burden on the healthcare system:

$560-$635 billion x 25% (back pain) = $140-$159 billion

$140-$159 billion x 69% (chiropractic helps) = $97-$110,000,000,000 (billion)

 

Absenteeism and Reduced Productivity Costs

$299-$335 billion x 25% (back pain) = $75-$84 billion

$75-$84 billion x 69% (chiropractic helps) = $52-$58,000,000,000 (billion)

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5).

 

Unfortunately, the likelihood that a medical provider in any subspecialty will encounter chronic pain and its complications will only increase in the future as the population advances in age and body mass. In addition, based upon the statistics there needs no extrapolation as to who should be the primary spine care provider or first option to treat chronic back pain or any mechanical back pain (no fracture, tumor or infection). We have verified that allopathy (medical doctors) not being able to conclude a diagnosis 85% of the time, where chiropractic has verified diagnosis and solutions 69% (or my 90% +) in verified scientific outcomes.

 

 

The conclusions are not an indictment against medicine, it is a conclusion based upon science to put billions back into our economy while first helping those in chronic pain with a “best outcome” solution.

 

 

References:

  1. Block, C. K. (2014). Examining neuropsychological sequelae of chronic pain and the effect of immediate-release oral opioid analgesics (Order No. 3591607). Available from ProQuest Dissertations & Theses Global. (1433965816). Retrieved from http://search.proquest.com/docview/1433965816?accountid=1416
  2. Peterson C., Bolton J., Humphreys K., (2012) Predictors of Improvement in Patients With Acute and Chronic Low Back Pain Undergoing Chiropractic Treatment, Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533
  3. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Case Report

 

By: Karen M. Callaghan, DC

Title: Spinal Adjustments are Safe in the Presence of Herniated disc with the Absence of Cord Compression

Abstract: The objective was to explore the use of MRI to increase the efficacy and safeness of adjusting the cervical spine in the presence of a disc herniation when there is no evidence of cord compression on MRI.

Key Words: Chiropractic, spinal adjustment, MRI, herniation

Introduction:  A 30 year old male patient presented to the office on 1/8/14 with injuries from a motor vehicle accident.  The motor vehicle accident had occurred 3 weeks prior to his first visit.  The patient was the restrained front seat passenger.  The car he was travelling in struck another car and the patient’s car was flipped over onto its roof.  While the car remained on its roof the patient was able to crawl out and awaited medical attention.  The patient was taken by ambulance to the hospital where he was examined and testing was ordered.  The patient had multiple CT scans of the head and X-rays of the cervical and lumbar.  The CT of the head revealed a nasal fracture and the patient underwent immediate surgery to repair his broken nose. 

The patient presented three weeks post-accident with persistent and progressive daily occipital headaches, neck pain into the shoulders bilaterally, upper back pain and lower back pain that radiates into the legs and down into the feet bilaterally. He has swelling at the left anterior knee and bandages around the right elbow and two black eyes. 

The patient states that he was having difficulty with regular activities of daily living including walking for more than 15-20 minutes, long periods of standing, more than an hour of sitting, any bending or lifting and any regular daily chores.  The patient also states he was having difficulty getting a restful night’s sleep due to the pain.  The patient’s visual analog scale rating was 10 out of 10.

History: The patient denied any prior history of neck or back pain.  No reported prior injuries or traumas.

Objective Findings:  An examination was performed and revealed the following:

            Range of Motion: 

Cervical Motion Studies:

Flexion: Normal=60                      Exam-   25 with pain  with spasm 

Extension: Normal=50                  Exam-   20 with pain  with spasm

Left Rotation: Normal=80             Exam-   35 with pain  with spasm

Right Rotation: Normal=80           Exam-   35 with pain  with spasm

Left Lat. Flex: Norma=-40             Exam-   15 with pain  with spasm

Right Lat. Flex: Normal=40           Exam-   15 with pain  with spasm

 

Dorsal-Lumbar Motion Studies:

Flexion: Normal=90                  Exam-   35 with pain   with spasm

Extension: Normal=30              Exam-   10 with pain  with spasm 

Left Rotation: Normal=30         Exam-   10 with pain  with spasm

Right Rotation: Normal=30       Exam-   5 with pain  with spasm 

Left Lat. Flex: Normal=20         Exam-   5 with pain  with spasm 

Right Lat. Flex: Normal=20       Exam-   5 with pain  with spasm 

 

               

Orthopedic Testing

The orthopedic testing revealed the following positive orthopedic tests in the cervical spine: Valsalva’s indicating the presence of a disc at L4-S1 and the lower cervical region, foraminal compression indicating radicular pain in the lower cervical region, Jackson’s compression , shoulder depressor and cervical distraction all indicating pain in the lower cervical region.  The lumbar testing revealed a positive Soto-Hall with pain at the L4-S1 level, Kemps positive with pain from L4-S1, Straight Leg raiser with pain at 60 degrees, Milgram’s with pain at the L5-S1 level, Lewin’s with pain at L5-S1, and Nachlas eliciting pain in the L5-S1 region.

 

Neurological Testing

The neurological exam revealed bilateral upper extremity tingling and numbness into the shoulder on the left and down the right arm into the hand. The lower extremity revealed tingling and numbness into the gluteal’s bilaterally with left sided radicular pain in to the leg into left foot.  The pinwheel revealed hypoesthesia at C7 bilaterally and L5 bilaterally dermatome level. The patient was unable to perform the heel-toe walk

The chiropractic motion palpation and static palpation exam revealed findings  at C 1,2 , 5, 6, 7 and T 2,3,4,9, 10  and L 3,4,5 as well as the sacrum.

X Ray  Studies:

The hospital had cervical x-rays and a CT of the head on the day of the accident. Thoracic and lumbar studies were needed as a result of the positive testing and the patients history and complaints The x-ray studies revealed a reversed cervical curve and misalignment of the C1,2,5,6,7 and the lumbar studies revealed a mild IVF encroachment at L5-S1 with rotations at L3,4,5.

The results of the exam were reviewed.  The patient’s positive orthopedic testing, neurological deficits coupled with the decreased range of motion and positive chiropractic motion and static palpation indicated the necessity to order both cervical[1]and lumbar[2]  MRI’s4.

 MRI results

The MRI images were personally reviewed.  The cervical MRI revealed a right paracentral disc herniation at the level of C5-6 with impingement on the anterior thecal sac.  There is also a C6-7 disc bulge impinging on the anterior thecal sac. The lumbar MRI revealed an L5-S1 disc herniation.  There are disc bulges at from L2-L4.

                  CERVICAL MRI STUDIES

LUMBAR MRI IMAGES

Treatment Plan:

After reviewing the history, examination, prior testing, x-rays, MRI’s and DOBI care paths3 it was determined that chiropractic adjustments6  wereclinically indicated

The patient was placed on a treatment plan of spinal manipulation with modalities including intersegmental traction, electric muscle stimulation and moist heat.  Diversified technique was used to adjust the subluxation diagnosed levels of C1,2,5,6,7 and L3,4,5.  Although there were herniated and bulging discs present in the cervical and lumbar spine there was no cord compression. Therefore; there was no contraindication to performing a spinal adjustment.  As long as there is enough space between the cord and the herniation or bulge then it is generally safe to adjust.5

The patient responded quite favorably to the spinal adjustments and therapies over the course of 6 months of treatments.  Initially, the patient was seen three times a week for the first 90 days.  The patient demonstrated subjective and objective improvement and his care plan was adjusted accordingly and reduced to two visits per week for the next 90 days of care.  His range of motion returned to 90% of normal:

Range of Motion: 

Cervical Motion Studies:

Flexion: Normal=60                      Exam-   55 with no pain 

Extension: Normal=50                  Exam-   40 with mild tenderness

Left Rotation: Normal=80             Exam-   75 with mild tenderness

Right Rotation: Normal=80           Exam-   75 with mild tenderness

Left Lat. Flex: Norma=-40             Exam-   35 with no pain 

Right Lat. Flex: Normal=40           Exam-   35 with no pain

 

Dorsal-Lumbar Motion Studies:

Flexion: Normal=90                  Exam-   80 with tenderness

Extension: Normal=30              Exam-   25 with tenderness 

Left Rotation: Normal=30         Exam-   25 with no pain

Right Rotation: Normal=30       Exam-   25 with no pain

Left Lat. Flex: Normal=20         Exam-   20 with no pain 

Right Lat. Flex: Normal=20       Exam-   20 with no pain

 

The patient had decreased spasm, decreased pain, increased ability to perform ADL’s and his sleep had returned to normal. The patient states that he was no longer having the same difficulties with regular activities of daily living.  He was now able to walk for 45 minutes to 1 hour before the lower back pain flared up, he is able to stand for 1-2 hours before the lower back pain begins, he is able to sit for an hour or more before the lower back pain flares up. When the patient bends or lifts he has learned to use his core and lifts less than 20-30 pounds to avoid exacerbating his low back.  The patient also states he was no longer having difficulty getting a restful night’s sleep.  The patient’s visual analog scale rating was 3 out of 10.

Conclusion:

The patient presented 3 weeks post trauma with cervical and lumbar pain as well as headaches.  The symptoms were progressing and the pain was radiating into the upper and lower extremities.  The history and exam indicated the presence of a herniated disc in the lower lumbar and cervical region.  Cervical and lumbar MRI’s were ordered to identify the presence of the herniated disc as well as to determine whether or not the patient should be adjusted.  The MRI results of both the cervical and lumbar MRI revealed herniated discs, however, because these discs were not causing cord compression it was safe to adjust the cervical and lumbar spine5.

Competing Interests:  There are no competing interests in the writing of this case report.

 

De-Identification: All of the patient’s data has been removed from this case.

 

References

  1. New England Journal of Medicine; Cervical MRI, July 28, 2005, Carette S. and Fehlings M.G.,N Engl J Med 2005; 353:392-399MRI for the lumbar disc, March 14  2013, el Barzouhi A., Vleggeert-Lankamp C.L.A.M., Lycklama à Nijeholt G.J., et al., N Engl J Med 2013; 368:999-1000 http://www.state.nj.us/dobi/pipinfo/carepat1.htm -16.7KB
  2. New England Journal of Medicine; Cervical-Disk HerniationN Engl J Med 1998; 339:852-853September 17, 1998DOI: 10.1056/NEJM199809173391219
  3. Is It Safe to Adjust the Cervical Spine in the Presence of a Herniated Disc? By Donald Murphy, DC, DACAN, Dynamic Chiropractic, June 12, 2000, Vol. 18, Issue 13
  4. Treatment Options for a Herniated Disc;  Spine-Health, Article written by:John P. Revord, MD

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Case Report


by Donald Capoferri DC, DAAMLP


Title: The Efficacy of Chiropractic Adjustments in the care of Migraine Headache with patients presenting with cervical disc bulge. 


Abstract: Objective: To explore the efficacy of chiropractic adjustments, and non-surgical spinal decompression in the treatment of cervical spine disc conditions presenting as neck pain, migraine headache, dizziness and visual disturbances. Diagnostic studies included physical examination, computer aided range of motion, orthopedic and neurological examinations, plain film x-ray studies, brain MRI, cervical spine MRI examinations.  Treatments included specific spinal adjustments, low level laser therapy and spinal decompression.  The patient’s outcome proved excellent in reduction of neck pain, headache severity and frequency as well as elimination of dizziness and visual disturbances.


Key Words: Migraine, chiropractic adjustment, disc bulge, spinal decompression.


Introduction: On 11/19/13 a 37-year-old female presented for examination and treatment of neck pain, migraine headaches with associated dizziness and visual disturbances.  The patient denies and recent injuries. 

Presenting Concerns: The patient reports neck pain in the cervical occipital region as a 4 on the Verbal Analog Scale of 0 meaning the complete absence of pain and 10 being unbearable pain.  The duration of the current symptom picture is 2 years and 1 month.  The patient further reports episodic migraine headaches starting at the upper cervical region and progressing into her occipital area.  These episodes are accompanied by dizziness and visual disturbances described as kaleidoscope vision.  At the time of the initial consultation these episodes were occurring 2-3 times per week.  The patient reports being afraid to drive her car due to concerns about headache onset.  The patient reports past consultations with her medical doctor who diagnosed her with vertigo and previous chiropractic care without results.  The records from both consultations were reviewed personally. 

Clinical Findings:  The patient presents with complaints of neck pain, headaches, dizziness and visual disturbances of 2 years duration.  The patient is a 37-year-old female who is a mother of 2.  The ages are 16 and 3.  

Her vital signs are:

Height - 5 ft. 0 inches

Weight - 130 lbs.

Handedness - R

Blood Pressure - L - 107 systolic and 78 diastolic 

Radial Pulse - 75 BPM

The patient’s Review of Systems and Family History were unremarkable.

Palpation/Spasm/Tissue changes:  The patient was evaluated by palpation and observation with the following findings: Bilateral cervical spine spasms rated at +2 in the cervical-occipital region.  Orthopedic testing was unremarkable.  Range of motion examination revealed mildly decreased left lateral flexion, moderately decreased flexion, right lateral flexion and extension. No pain was produced during range of motion examination.

Neurological Examination: Biceps, Triceps and Brachioradialis reflexes were rated at a +2 bilaterally.  Sensory examination revealed normal sensation bilaterally for dermatomes C-5 through T1.  Motor/Muscle testing revealed 5 out of 5 bilaterally for Deltoids, Biceps, and Triceps, Forearm and Intrinsic Hand muscles.



Radiographic findings: reversal of the cervical curve with altered C5/C6 disc space is noted. (Fig. 1, (A) (B) A small osteophyte is observed on the posterior inferior body of C5.  Flexion malposition of C5 is also noted.  (Fig. 1, (B).

Fig. 1,  (A), (B) show loss of the cervical lordosis, flexion malposition of C5, partial collapse of C5/6 anterior disc space.





Fig. 1. (B) shows upon magnification a small posterior-inferior osteophyte.





Fig. 2,  (A), (B) shows in T2 MRI images (A) is Sagittal and (B) is Axial a 

C5/6 central disc herniation contacting the ventral cord. 


Diagnostic Focus and Assessment: 
Diagnoses considered are: Brain Tumor, Cervical Disc Displacement, and Cervical-cranial     syndrome.  A brain MRI was ordered and produced normal findings.  Diagnostic reasoning included the C5/C6 disc/osteophyte complex and the encroachment into the ventral aspect of the central canal and contact with the cervical spinal cord. (1) Peter J. Tuchin, GradDipChiro, DipOHS, Henry Pollard, GradDipChiro, GradDipAppSc, Rod Bonillo, DC, DO.  Received 29 June 1999.  Another consideration was the treatment schedule because the patient lives 60 miles west of the clinic and 2 treatments was the ordered therapeutic schedule.

Therapeutic Focus and Assessment:  Assessment of the cervical spine MRI both sagittal and axial views of the C5/C6 and C6/C7 segmental levels revealed adequate space between the cervical cord and posterior vertebral elements.  It was determined that conservative management of this patient was appropriate.  Therapeutic focus was reducing the pressure of the C5/C6 disc/osteophyte complex on the ventral cord.  Promoting healing of damaged nerve tissue and restoring more favorable position and motion of vertebral segments C5/C6.  The modalities used to treat this patient were:

1.     Specific Spinal Adjustments: utilizing a Sigma Precision Adjusting Instrument to introduce a percussive force of 20 lbs. with a maximum of impact number of 50.

2.     Spinal Decompression: A Hill Spinal Decompression table was utilized with 8 lbs. of pull maximum and a cycle of 5 minute at maximum and 5 minutes at reduction to 50% over a 25 minutes treatment session.  The patient completed 18 sessions in total.  

3.     Low Level Laser Therapy was used to promote healing on a cellular level using a Dynatron Solaris system.  Treatments consisted of 30 seconds of exposure to an 860-nanometer beam at C5/C6 and C6/C7 levels.

Follow-up and Outcomes: The patient’s compliance to the treatment schedule as rated at 9 of 10.  Completion of the recommended 18 treatments required 1 week longer than anticipated.  For personal reasons the patient missed 2 treatment sessions but made them up by adding a week to the estimated completion date. Upon discharge examination the patient reports her neck pain on the Verbal Analog Scale a 2 of 10 with 0 being the complete absence of pain and 10 being the worst pain imaginable. She further reported her headaches as a 1 on the Verbal Analog Scale.  Both symptoms were constant since 10/01/11.  This is duration of 25 months prior to her first visit. Her symptoms of dizziness and visual disturbances have been absent since 12/13/13.

Discussion: Headaches and Migraine Headaches are a big health     problem. It has been estimated that 47% of the adult population have headache at least once within last year in general.  More than 90% of sufferers are unable to work or function normally during their migraine. American employers lose more than $13 billion each year as a result of 113 million lost workdays due to migraine. (2) Schwartz BS1, Stewart WF, Lipton RB.

              J Occup Environ Med. 1997 Apr; 39(4): 320-7.

 This case report is very limited because it represents the experience and clinical findings for just 1 patient. However a study of the references included with this report as well as reports by care providers as well as testimonials from patients indicates that more study should be invested in the relationship of the cervical spine, its structures and biomechanics during the diagnostic workup on headache and migraine patients.  

Informed Consent: The patient provided a signed informed consent.

Competing Interests: There are no competing interests writing of this case report.

De-Identification: All the patient’s related data has been removed from this case report.

References:

1. Schwartz BS1, Stewart WF, Lipton RB.

J Occup Environ Med. 1997 Apr; 39(4): 320-7.

Lost workdays and decreased work effectiveness associated with headache in the workplace.

Wikipedia, The Free Encyclopedia. (2010, July). Human musculoskeletal system. Retrieved from http://en.wikipedia.org/wiki/Musculoskeletal

2. Vernon, H., Humphreys, K., & Hagino, C. (2007). Chronic mechanical neck pain in adults treated by manual therapy: A systematic review of change scores in randomized clinical trials, Journal of Manipulative and Physiological Therapeutics, 30(3), 215-227.


3. Peter J. Tuchin, GradDipChiro, DipOHS, Henry Pollard, GradDipChiro, GradDipAppSc, Rod Bonillo, DC, DO.  Received 29 June 1999

A randomized controlled trial of chiropractic spinal manipulative therapy for migraine


4.Mark Studin DC, FASBE (C), DAAPM, DAAMLP, William J. Owens DC, DAAMLP Chronic Neck Pain and Chiropractic. A Comparative Study with Massage Therapy.

5. D’Antoni AV, Croft AC. Prevalence of Herniated Intervertebral Discs of the Cervical Spine in Asymptomatic Subjects Using MRI Scans: A Qualitative Systemic Review. Journal of Whiplash & Related Disorders 2006; 5(1):5-13.

6.  Murphy, D. R., Hurwitz, E. L., & McGovern, E. E. (2009). A nonsurgical approach to the management of patients with lumbar radiculopathy secondary to herniated disk: A prospective observational cohort study with follow-up. Journal of Manipulative and Physiological Therapeutics, 32(9), 723-733.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Case Report

By David DePaolis, DC, DAAMLP   

   

Title: Abatement of radiculopathy clinical signs and symptoms after chiropractic treatment in an older patient with trauma induced posterolateral disc herniation, superimposed on an underlying disc bulge.

 

Abstract: Objective: To examine the concomitant clinical diagnosis of a lumbar disc bulge and lumbar disc herniation at the same spinal level, in an older traumatically injured patient with radicular symptoms. Diagnostic studies include physical examination, including orthopedic and neurological examination, lumbar MRI without contrast, and plain film x-rays. Treatments included low force instrument adjusting without manual manipulation, diversified chiropractic manipulation, flexion-distraction treatment, intersegmental traction, electric muscle stimulation, ice, heat and massage/trigger point therapy. The patient’s outcome was very good and resulted in complete abatement of initial L5 paresthesia and radiating symptoms into the left leg, although mild lower back pain remained upon discharge from active treatment.

 

Key words: Lumbar posterolateral disc herniation, nerve root compression, lumbar radiculopathy, bulging lumbar disc

 

Introduction: A 63 year old, 6’ 0”, 193lbs., male was seen for a chief complaint of lower back pain radiating into the left leg with numbness in the dorsum of the left foot which started immediately following a motor vehicle accident with a frontal impact. During the collision, he reported his right knee struck the dashboard and his head struck the ceiling of his vehicle causing him to briefly lose consciousness. The patient additionally reported immediate neck and right knee pain. He was taken via ambulance to the hospital where he was evaluated, x-rayed, given medications and released the same day. He was unable to work as a bailiff in a courthouse due to worsening pain and after 3 days sought treatment in my office.

 

The patient noted that prior to the accident he did not have any physical limitations and that he played soccer weekly. He was observed to have a trim, fit build. He reported no prior motor vehicle accidents or other serious injury. He reported no previous neck or lower back pain and denied the use of alcohol, tobacco and illicit drugs.

 

 

Clinical Findings: Lasague’s, Braggard’s and Kemps orthopedic testing was positive on the left and lumbar motion was decreased approximately 60% collectively. Lasague’s and Braggard’s revealed an increase in radiating pain into the left leg and Kemps was positive bilaterally for pain into the left lower extremity. These orthopedic tests were positive indicating nerve root irritation. Dermatomal evaluation revealed a decreased sensation in the dorsum of the left foot representing the L5 dermatome. Motor evaluation revealed a weakness when attempting to walk on the heel of the left foot and weakness of the left extensor hallicus longus muscle, again indicating possible L5 nerve root compromise. Lumbar x-rays revealed a severe decrease of the normal lumbar lordosis, mild L3-L4 spondylosis (arthritis) and a posterior misalignment of L4 in relation to L5. The patient’s review of systems, surgical and family history were all unremarkable as reported.

 

Therapeutic Focus and Assessment: A non-contrast lumbar spine MRI was ordered immediately with 2 mm slice thickness and no gap in between slices on a 1.5 Tesla machine for optimal visualization of pathology due to the clinical presentation of left L5 nerve root compression. Lumbar MRI’s revealed a L4-L5 broad-based left posterolateral disc herniation superimposed on an underlying disc bulge with severe left lateral recess narrowing, compressing the descending left L5 nerve root.

 

 

Note: the findings of a disc bulge AND disc herniation at the same spinal level do not contradict each other. Patients often have an underlying disc bulge (degenerative thinning of the outer fibers (annulus) of the disc causing “bulging”). When subject to trauma, a focal displacement of disc material through a tear in the annular fibers, disc herniation, then occurs through the thinned annulus of the bulging disc. Further, a bulging disc is actually more likely to herniate with trauma due to the thinning of the annulus than a normal healthy disc.

 

          Definition –Bulging disc: A disc in which the contour of the outer anulus extends, or appears to extend, in the horizontal (axial) plane beyond the edges of the disc space, over greater than 50% (180 degrees) of the circumference of the disc and usually less than 3mm beyond the edges of the vertebral body apophyses. (Ref. 2)

 

          Definition - Herniated disc: Localized displacement of disc material beyond the normal margins of the intervertebral disc space. (Ref. 2)

Again, the key distinction is the localized (aka focal displacement) of disc material that differentiates a herniated disc from a bulging disc. Or stated this way,“The bulging disk is defined as a disk that extends diffusely beyond the adjacent vertebral body margins in all directions” (Ref. 1)

 

Follow-up and Outcomes: Upon discovery of a L4-L5 posterolateral disc herniation compressing the left L5 nerve root finding on MRI evaluation, the patient was referred for neurologic consult. The neurologist diagnosed a left L4-L5 radiculopathy after a positive lower extremity EMG/NCV study was performed.

 

Radiculopathy is a general term used to describe any disease of the nerve roots. In this case, the cause of the radiculopathy was a traumatically induced lumbar posterolateral disc herniation.

 

Definition – Radiculopathy: Sometimes referred to as a pinched nerve, it refers to compression of the nerve root - the part of a nerve between vertebrae. This compression causes pain to be perceived in areas to which the nerve leads.(Ref. 3)

 

The patient underwent approximately 5 months of active chiropractic treatment after which an ordered gap in treatment of approximately 7 weeks occurred. After the gap in treatment, the patient reported they continued to experience no remaining radicular symptoms and re-evaluation showed no remaining clinical findings consistent with radiculopathy. However, the patient did report continuing to experience mild, intermittent lower back pain.

 

 

DISCUSSION: It is appropriate to immediately order MRI imaging in patients with a history of trauma leading to sudden onset of obvious clinical signs and symptoms of radiculopathy to ascertain an accurate diagnosis, prognosis and treatment plan. Is it important to understand the difference between herniated and bulging disc findings on MRI evaluation and that herniation can and does occur after a pre-existing disc bulge at the same spinal level. The patient in this case experienced immediate onset of radicular symptoms after trauma and was promptly evaluated with a lumbar MRI. The lumbar MRI confirmed a disc herniation compressing the left L5 nerve root as well as an underlying disc bulge.  EMG testing confirmed the radiculopathy diagnosis at L4-L5 on the left. Chiropractic treatment resulted in a very favorable outcome aided by an accurate diagnosis.

 

 

SUMMARY: Lumbar posterolateral disc herniation (interestingly, the most common type of disc herniation – Ref. 4) can affect a lumbar nerve root, causing radiculopathy. Further, “The stress of annulus circumference is higher at the posterolateral region than that of other regions of annulus circumference” – (Ref. 5). I report a case of a healthy 64 year old male who presented with lower back pain radiating into the left leg with no relevant personal or family history or previous trauma, after a front impact collision while driving in which his right knee struck the dashboard. The patient showed immediate clinical signs and symptoms of lumbar disc herniation and left L5 radiculopathy. A lumbar MRI without contrast was ordered immediately and revealed a L4-L5 left posterolateral disc herniation superimposed on an underlying disc bulge, compressing the left L5 nerve root. Subsequent EMG testing confirmed a left L4-L5 radiculopathy. The diagnosis of herniation and disc bulge does not mean the herniation was pre-existing, as bulging discs are a risk factor for disc herniation due to a thinner, weaker annulus. The patient's history of no previous trauma and sudden onset of lower back pain radiating into the left leg, confirm the traumatic cause of the posterolateral disc herniation. Conservative chiropractic treatment was effective at eliminating all radicular signs and symptoms, even after an approximate 2 month gap in active treatment. Chiropractic care has been shown to be both safe and effective in treating patients with disc herniation and accompanying radicular symptoms. (Ref. 6, 7, 8, that can be reviewed for further study and investigation)

 

Informed consent: The patient provided a signed informed consent.

 

Competing Interests: There are no competing interests writing this case report.

 

 

De-Identification: All patient related data has been removed from this case report.

References:

  1. Milette PC. The proper terminology for reporting lumbar intervertebral disk disorders. AJNR Am J Neuroradiol 1997;18:1859-66.
  1. David F. Fardon, MD, Alan L. Williams, MD, Edward J. Dohring, MD. Lumbar disc nomenclature: version 2.0 Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. The Spine Journal 14 (2014) 2525–2545
  1. http://medical-dictionary.thefreedictionary.com/radiculopathy
  1. Gopalakrishnan N1, Nadhamuni K2, Karthikeyan T3 Categorization of Pathology Causing Low Back Pain using Magnetic Resonance Imaging (MRI) J ClinDiagn Res. 2015 Jan;9(1):TC17-20.
  2. Guo LX, Teo EC. Influence prediction of injury and vibration on adjacent components of spine using finite element methods. J Spinal Disord Tech. 2006 Apr;19(2):118-24.
  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphreys B., (2014) Outcomes of Acute and Chronic Patients With Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniations Receiving High-Velocity, Low Amplitude, Spinal Manipulation Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3)155-63
  1. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiscectomy for sciatica? A propective randomized clinical study. Journal of Manipulative and Physiological Therapeutics, 33
  1. Whedon, J. M., Mackenzie, T.A., Phillips, R.B., & Lurie, J.D. (2014). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69. Spine,  (Epub ahead of print) 1-33.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Chiropractic has a Positive Effect on Depression and Anxiety

 

A report on the scientific literature 


 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Many patients who experience pain, also have concurrent anxiety and/or depression. Sometimes the pain doesn’t have to be severe or traumatically caused, it just exists for reasons unknown. Through the years, too many patients go to doctors and state they have been depressed or have an unusual amount of anxiety for reasons unknown and the doctor when asking probing questions uncovers that the patient has been in pain. Intuitively, the doctor and patient have concluded the reason for the depression or anxiety has been one of frustration out of being in pain for so long.

 

 

This author has experienced that for over 3 decades of treating patients in both acute and chronic pain with no answer better than “This too shall pass, be patient.” Research has now given us answers.

 

 

“Within the brain, the pain experience is subserved by an extended network of brain regions including the thalamus (THA), primary and secondary somatosensory, cingulate, and insular cortices. Collectively, these regions are referred to as thepain processing network (PPN) and encode the sensory discriminate and cognitive and emotional components of the pain experience. Perception of pain is dependent not merely on the neural activity within the PPN [pain processing network] but also on the flexible interactions of this network with other functional systems, including the descending pain modulatory system” (Gay et al., 2014, p. 617).  This is part of the reason why some patients experience pain differently than others.  Some have anxiety, depression and are at a loss to function while others can “ignore” the pain and maintain an adequate functional level as a productive member of society.  Pain is deeply tied to the most primitive regions of the central nervous system and it appears as chiropractors have observed clinically for 116 years that therapeutically speaking, we can have an influence on these higher centers with little or no side-effects. Simply put, patients under chiropractic care have reported an improvement of both anxiety and depression after chiropractic care, which has also been this author’s repeated experience.

 

 

Gay et al. (2014) went on to report, “This study assessed the relationship of brain activity between regions of the PPN [pain processing network] before and after MT [manual therapy or chiropractic spinal adjustments]. Using this approach, we found common and treatment-dependent changes in FC [functional changes]…Our study is unique in our neurophysiologic measure because we used resting-state fMRI [functional MRI] in conjunction with FC [functional change] analyses. Our results are in agreement with studies that have found immediate changes using other neurophysiologic outcomes, such as Hoffman-reflex and motor-neuron excitability, electroencephalography with somatosensory-evoked potentials, transcranial magnetic stimulation with motor evoked potentials, and task-based fMRI with peak BOLD response” (p. 619 and 624).  This study concludes that chiropractic spinal adjustments create functional changes in multiple regions of the brain based upon multiple outcome measures.   In the study by Gay et al. (2014), this was measureable and reproducible. 

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified(Whedon et al., 2015, p. 5).

 

References:

 

 

  1. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain.Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627
  2. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

How Does the Chiropractic Adjustment Work?

A Literature Review of Pain Mechanisms & Brain Function Alteration

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Reference: Studin M., & Owens W., (2015) How Does the Chiropractic Adjustment Work? A Literature Review of Pain Mechanisms and Brain Function Alteration, The American Chiropractor 37(8)  30, 32-34, 36-38, 40, 42-43

 

Were D.D. and B.J. Palmer right with their bone on nerve theory?According to Charles A. Lantz, DC. PhD. Director of Research, Life Chiropractic College West (2015), Montgomery and Nelson cited the context within which medical authors in the mid- to late 19th century referred to subluxation, one that was similar to how D.D. Palmer later would:

 

A vertebra is said to be displaced or luxated when the joint surfaces are entirely separated. Sub-luxation is a partial or incomplete separation: one in which the articulating surfaces remain in partial contact. This latter condition is so often referred to and known by chiropractors as sub-luxation. The relationship existing between bones and nerves are so nicely adjusted that anyone of the 200 bones, more especially those of the vertebral column, cannot be displaced ever so little without impinging upon adjacent nerves. Pressure on nerves excites, agitates, creates an excess of molecular vibration, whose effects, when local, are known as inflammation, when general, as fever. A subluxation does not restrain or liberate vital energy. Vital energy is expressed in functional activity. A subluxation may impinge against nerves, the transmitting channel may increase or decrease the momentum of impulses, not energy. http://www.chiro. org/LINKS/FULL/A_Review_of_the_Evolution.shtml#Citation_7

 

Lance (2015) also reported, "According to BJ Palmer, a subluxation represented a displaced bone that impinged on a nerve, thus interfering with the transmission of vital nerve energy (or, more specifically, the transmission of ‘mental impulses.’)” (http://www.chiro.org/LINKS/FULL/A_Review_of_the_ Evolution. shtml)

 

For over a century, doctors of chiropractic have been explaining chiropractic by teaching patients and the medical community that there are bones compressing/irritating spinal nerves. The ensuing nervous system dysfunctions have negative effects on the function of peripheral nervous systems, central nervous systems and patients’ overall ability to maintain homeostasis. Essentially, they go into states of dis-ease.  These discussions were in large part due to the teachings of D.D. Palmer and B.J. Palmer as previously cited. Based on the results rendered in chiropractic offices across the country and in a patient-driven model of success, the general consensus in both private practice and chiropractic academia had been to maintain status quo and simply teach what has worked in the absence of conclusive evidence, particularly in light of a lack of serious governmental funding and support for chiropractic research.  In addition, dogma has also created blinders for many, as evidence evolves to further chiropractic and its understanding, application and expansion.

 

Over the last 10-15 years, research has been published by the scientific community that has begun to verify that D.D. and B.J. Palmer’s hypotheses were fundamentally correct, while clarifying the specific physiological mechanisms related to chiropractic’s ability to alleviate pain.  As a result of initially studying pain mechanisms, contemporary research has also begun to set the foundation for understanding why chiropractic works with systemic and autonomic dysfunction and potential disease treatment through the adjustment – central nervous system connection. It is the understanding of that connection with pain that is helping people to begin to understand the full impact of the chiropractic spinal adjustment and render the evidence to help more get well.

 

CENTRAL NERVOUS SYSTEM PROCESSING OF PAIN REDUCTION

 

Coronado et al. (2012) reported that, “Reductions in pain sensitivity, or hypoalgesia, following SMT [spinal manipulative therapy or the chiropractic adjustment] may be indicative of a mechanism related to the modulation of afferent input or central nervous system processing of pain” (p. 752). “The authors theorized the observed effect related to modulation of pain primarily at the level of the spinal cord since (1) these changes were seen within lumbar innervated areas and not cervical innervated areas and (2) the findings were specific to a measure of pain sensitivity (temporal summation of pain), and not other measures of pain sensitivity, suggesting an effect related to attenuation of dorsal horn excitability and not a generalized change in pain sensitivity” (Coronado et al., 2012, p. 752). These findings indicate that a chiropractic spinal adjustment affects the dorsal horns at the root levels which are located in the central nervous system.  This is the beginning of the “big picture” since once we identify the mechanism by which we can positively influence the central nervous system, we can then study that process and its effects in much more depth.    

 

One of the main questions asked by Corando et al. (2012) “…was whether SMT (chiropractic adjustments) elicits a general response on pain sensitivity or whether the response is specific to the area where SMT is applied. For example, changes in pain sensitivity over the cervical facets following a cervical spine SMT would indicate a local and specific effect while changes in pain sensitivity in the lumbar facets following a cervical spine SMT would suggest a general effect. We observed a favorable change for increased PPT [pressure pain threshold] when measured at remote anatomical sites and a similar, but non-significant change at local anatomical sites. These findings lend support to a possible general effect of SMT beyond the effect expected at the local region of SMT application (p. 762).

 

The mechanisms of SMT are theorized to result from both spinal cord mediated mechanisms and supraspinal mediated mechanisms [brain]. A recent model of the mechanisms of manual therapy suggests changes in pain related to SMT result from an interaction of neurophysiological responses related to the peripheral nervous system and the central nervous system at the spinal and supraspinal level” (Coronado et al., 2012, p. 762).  This demonstrates that the chiropractic adjustment influences the peripheral nervous system and the central nervous system.  “Collectively, these studies provide evidence that SMT has an immediate effect on reducing pain sensitivity, most notably at the remote region of stimulus assessment with similar results in clinical and healthy populations” (Coronado et al., 2012, p. 763). 

 

  1. ACTIVATION OF BRAIN & DESCENDING NERVE PATHWAYS BEYOND AREAS TREATED
  2. CHIROPRACTIC ADJUSTMENT VS. SPINAL MOBILIZATION

 

Reed, Pickar, Sozio, and Long (2014) reported:

…forms of manual therapy have been clinically shown to increase mechanical pressure pain thresholds (i.e., decrease sensitivity) in both symptomatic and asymptomatic subjects.Cervical spinal manipulation has been shown to result in unilateral as well as bilateral mechanical hypoalgesia. Compared with no manual therapy, oscillatory spinal manual therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1, and L3 in individuals with rheumatoid arthritis. The immediate and widespread hypoalgesia associated with manual therapy treatments has been attributed to alterations in peripheral and/or central pain processing including activation of descending pain inhibitory systems.

Increasing evidence from animal models suggests that manual therapy activates the central nervous system and, in so doing, affects areas well beyond those being treated. (p. 277)

Reed et al. (2014) also reported:

 

The finding that only the higher intensity manipulative stimulus (ie, 85% BW [body weight] vs 55% BW or control) decreased the mechanical sensitivity of lateral thalamic neurons to mechanical trunk stimulation coincides with other reports relating graded mechanical or electrical stimulus intensity to the magnitude of central inhibition…

Several clinical studies indicate that spinal manipulation [chiropractic spinal adjustment] alters central processing of mechanical stimuli evidenced by increased pressure pain thresholds and decreased pain sensitivity in asymptomatic and symptomatic subjects following manipulation. (p. 282)

 

Thalamus. (2015). Wikipedia. Retrieved from http://en.wikipedia.orgwiki/Thalamus

The thalamus has multiple functions. It may be thought of as a kind ofhubof information. It is generally believed to act as a relay between different subcortical areas and thecerebral cortex. In particular, every sensory system (with the exception of theolfactory system) includes a thalamic nucleus that receives sensory signals and sends them to the associated primary cortical area. For the visual system, for example, inputs from theretinaare sent to thelateral geniculate nucleusof the thalamus, which in turn projects to thevisual cortexin theoccipital lobe. The thalamus is believed to both process sensory information as well as relay it—each of the primary sensory relay areas receives strong feedback connections from the cerebral cortex. Similarly themedial geniculate nucleusacts as a keyauditoryrelay between theinferior colliculusof themidbrainand theprimary auditory cortex, and the ventral posterior nucleusis a keysomatosensoryrelay, which sends touch andproprioceptiveinformation to theprimary somatosensory cortex.

 

The thalamus also plays an important role in regulating states ofsleep and wakefulness.Thalamic nuclei have strong reciprocal connections with the cerebral cortex, formingthalamo-cortico-thalamic circuitsthat are believed to be involved withconsciousness. The thalamus plays a major role in regulating arousal, the level of awareness, and activity (“Thalamus,” http://en.wikipedia.org/wiki/Thalamus).

 

This indicates that the chiropractic spinal adjustment reduces pain by effecting the thalamus and descending central pain pathways, while mobilization does not show evidence of having the same effect.  In addition, with our current knowledge of the chiropractic adjustment effecting the thalamus, we can begin to offer an explanation of how the first historically reported chiropractic adjustment by D.D. Palmer helped Harvey Lilard regain his hearing. 

CHIROPRACTIC ADJUSTMENTS REDUCES PAIN IN MULTIPLE REGIONS DUE TO LOCAL AND CNS STIMULATION

 

Mohammadian, Gonsalves, Tsai, Hummel, and Carpenter (2004) investigated “the hypoalgesic effects of a single SMT on acute inflammatory reactions and pain induced by capsaicin [hot pepper extract]. These effects were assessed by measuring both sensory (allodynia [central nervous system pain], hyperalgesia, spontaneous pain intensity) and local vascular parameters (blood flow)” (p. 382). They reported “As expected, topical capsaicin induced primary hyperalgesia in the application area and secondary hyperalgesia outside that area. While the local vascular parameter blood flow was not affected by a single SMT [spinal manual therapy], the results indicated that sensory parameters (spontaneous pain perception and areas of both secondary hyperalgesia and allodynia) were significantly altered after spinal manipulation compared with N-SMT [non-spinal manipulative therapy]. These results clearly demonstrated that in contrast to the N-SMT condition, a single spinal manipulation triggered hypoalgesic effects” (Mohammadian et al., 2004, p. 385).

 

“In the present study, local blood flow was not affected by a single SMT. However, significant changes were observed on sensory parameters, supporting the hypothesis of centrally mediated effects of a single SMT. It is well known that secondary hyperalgesia appears to be due to central sensitization of the spinal dorsal horn neurons,while primary hyperalgesia is caused by nociceptor sensitization. It has also been discussed that mechanisms underlying allodynia are centrally mediated.Our findings also confirm the view that the hypoalgesic effects of a single SMT might be due to central modulation. These effects could also be explained as a result of a stress reaction caused by spinal manipulation treatment…Other studies discussed thatspinal manipulation [chiropractic spinal adjustments] stimulates mechanoreceptors of the spinal joints, resulting in afferent discharges and subsequently causing inhibitory reactions on the dorsal horn neurons.Vicenzino et al. demonstrated also a strong correlation between hypoalgesic and sympathoexcitatory effects, suggesting that a central control mechanism might be activated by manipulative therapy… previous studies as well as the present investigation…indicate that hypoalgesic effects of spinal manipulation are more likely mediated through central modulation” (Mohammadian et al., 2004, p. 386).  This study suggests that the chiropractic spinal adjustment affects the nociceptors and the mechanoreceptors at the joint level causing central modulation of an effect at the cord and/or brain level(s) and pain reductions in multiple areas as a result.

CHIROPRACTIC ADJUSTMENTS CREATE HIGHER FUNCTION IN CORTICAL REGIONS

 

Gay, Robinson, George, Perlstein, and Bishop (2014) reported, “With the evidence supporting efficacy of MT [manual therapy or chiropractic spinal adjustments] to reduce pain intensity and pain sensitivity, it is reasonable to assume that the underlying therapeutic effect of MT is likely to include a higher cortical component” (p. 615).   It is in this place in particular that chiropractic must lead in both clinical application and academic processes such as formal continuing education lectures and research.

 

In the study conducted by Gay et al. (2014), “…pain-free volunteers processed thermal stimuli applied to the hand before and after thoracic spinal manipulation (a form of MT).  What they found was that after thoracic manipulation, several brain regions demonstrated a reduction in peak BOLD [blood-oxygen-level–dependent] activity. Those regions included the cingulate, insular, motor, amygdala and somatosensory cortices, and the PAG [periaqueductal gray regions]” (p. 615). In other words, thoracic adjustments produced direct and measureable effects on the central nervous system across multiple regions, which in the case of the responsible for the processing of emotion (cingulate cortex, aka limbic cortex) are regarding the insular cortex which also responsible for regulating emotion as well has homeostasis. The motor cortex is involved in the planning and execution of voluntary movements, the amygdala’s primary function is memory and decision making (also part of the limbic system), the somatosensory cortex is involved in processing the sense of touch (remember the homunculus) and, finally, the periaqueductal gray is responsible for descending pain modulation (the brain regulating the processing of painful stimuli).

 

Brain Region

Function

Cingulate Cortex

Emotions, learning, motivation, memory

Insular Cortex

Consciousness, homeostasis, perception, motor control, self-awareness, cognitive function

Motor Cortex

Voluntary movements

Amygdala Cortex

Memory, decision making, emotional reactions

Somatosensory Cortex

Proprio and mechano-reception, touch, temperature, pain of the skin, epithelial, skeletal muscle, bones, joints, internal organs and cardiovascular systems

Periaqueductal Gray

Ascending and descending spinothalamtic tracts carrying pain and temperature fibers

 

This is a major step in showing the global effects of the chiropractic adjustment, particularly those that have been observed clinically, but not reproduced in large studies.  “The purpose of this study was to investigate the changes in FC [functional changes] between brain regions that process and modulate the pain experience after MT [manual therapy]. The primary outcome was to measure the immediate change in FC  across brain regions involved in processing and modulating the pain experience and identify if there were reductions in experimentally induced myalgia and changes in local and remote pressure pain sensitivity” (Gay et al., 2014, p. 615).  Simply put, can the processing of pain be modulated or regulated from an external force without the use of pharmacy or surgery? 

 

“Within the brain, the pain experience is subserved by an extended network of brain regions including the thalamus (THA), primary and secondary somatosensory, cingulate, and insular cortices.Collectively, these regions are referred to as the pain processing network (PPN) and encode the sensory discriminate and cognitive and emotional components of the pain experience.Perception of pain is dependent not merely on the neural activity within the PPN [pain processing network] but also on the flexible interactions of this network with other functional systems, including the descending pain modulatory system” (Gay et al., 2014, p. 617).  This is part of the reason why some patients experience pain differently than others.  Some have anxiety, depression and are at a loss to function while others can “ignore” the pain and maintain an adequate functional level as a productive member of society.  Pain is deeply tied to the most primitive regions of the central nervous system and it appears (as chiropractors have observed clinically for 116 years) that therapeutically speaking, we can have an influence on these higher centers with little or no side-effects.   

 

Gay et al. (2014) went on to report, “This study assessed the relationship of brain activity between regions of the PPN [pain processing network] before and after MT [manual therapy or chiropractic spinal adjustments]. Using this approach, we found common and treatment-dependent changes in FC [functional changes]…Our study is unique in our neurophysiologic measure because we used resting-state fMRI [functional MRI] in conjunction with FC [functional change] analyses. Our results are in agreement with studies that have found immediate changes using other neurophysiologic outcomes, such as Hoffman-reflex and motor-neuron excitability, electroencephalography with somatosensory-evoked potentials, transcranial magnetic stimulation with motor evoked potentials, and task-based fMRI with peak BOLD response” (p. 619 and 624).  This study concludes that chiropractic spinal adjustments create functional changes in multiple regions of the brain based upon multiple outcome measures.   In the study by Gay et al. 2014), this was measureable and reproducible. In addition, this has far reaching effects in setting the foundation for understanding how the adjustment works in systemic and possibly autonomic changes by being able to measure and reproduce functional changes within the brain as direct sequellae.

 

  1. MUSCLE IMPAIRMENT CREATES CNS ALTERATIONS & THE NECESSITY FOR BOTH SHORT-TERM & LONG-TERM CHIROPRACTIC CARE
  2. ADJUSTMENTS WORK – SPINAL MOBILIZATION DOES NOT

 

Daligadu, Haavik, Yielder, Baarbe, and Murphy (2013) also reported that “Numerous studies indicate that significant cortical plastic changes are present in various musculoskeletal pain syndromes.In particular, altered feed-forward postural adjustments have been demonstrated in a variety of musculoskeletal conditions including anterior knee pain, low back pain,and idiopathic neck pain.Furthermore, alterations in trunk muscle recruitment patterns have been observed in patients with mechanical low back pain” (p. 527). What this means is that there are observable changes in the function of the central nervous system seen in patients with musculoskeletal conditions.  That is something that chiropractors have observed clinically and shows the medical necessity for chiropractic care for both short and long term management as well as in the prevention of pain syndromes. 

 

Daligadu et al. (2013) stated the following:

 

There is also evidence in the literature to suggest that muscle impairment occurs early in the history of onset of spinal complaints,and that such muscle impairment does not automatically resolve even when pain symptoms improve. This has led some authors to suggest that the deficits in proprioception and motor control, rather than the pain itself, may be the main factors defining the clinical picture and chronicity of various chronic pain conditions.

Furthermore, recent evidence has demonstrated that spinal manipulation can alter neuromuscular and proprioceptive function in patients with neck and back pain as well as in asymptomatic participants. For instance, cervical spine manipulation has been shown to produce greater changes in pressure pain threshold in lateral epicondylalgia than thoracic manipulation; and in asymptomatic patients, lumbar spine manipulation was found to significantly influence corticospinal and spinal reflex excitability. “Interestingly, Soon et al did not find neurophysiological changes following mobilization on motor function and pressure pain threshold in asymptomatic individuals, perhaps suggesting that manipulation [chiropractic spinal adjustments], as distinct from mobilization, induces unique physiological changes. There is also accumulating evidence to suggest that chiropractic manipulation can result in changes to central nervous system function including reflex excitability, cognitive processing, sensory processing, and motor output.There is also evidence in SCNP [sub-clinical neck pain] individuals that chiropractic manipulation alters cortical somatosensory processingand elbow joint position sense.This evidence suggests that chiropractic manipulation may have a positive neuromodulatory effect on the central nervous system, and this may play a role in the effect it has in the treatment of neck pain. It is hoped improving our understanding of the neurophysiological mechanisms that may precede the development of chronic neck pain in individuals with SCNP will help provide a neurophysiological marker of altered sensory processing that could help determine if an individual is showing evidence of disordered sensorimotor integration and thus might benefit from early intervention to prevent the progression of SCNP into more long-term pain states.  (p. 528)

 

The authors went on to state, “Previous work using paired-pulse transcranial magnetic stimulation (TMS) of the motor cortex has indicated that cervical spine manipulation can alter sensorimotor integration of the upper limb by decreasing the amount of short-interval intracortical inhibition (SICI).A recent somatosensory evoked potential (SEP) study involving dual SEPs from the median and ulnar nerves demonstrated that cervical manipulation of dysfunctional areas in patients with a history of reoccurring neck pain or stiffness was able to affect sensorimotor integration…spinal manipulation altered the way the central nervous system responded to the motor training task” (Daligadu et al., 2013, p. 528).

 

Furthermore, the authors added, “…altered afferent input from the neck due to joint dysfunction leads to disordered sensorimotor integration within the cerebellum and a subsequent derangement in motor commands to the upper limb. The cerebellum plays a fundamental role in detecting the encoded afferent signal and relaying this information as part of the body schema. When the input signal is no longer encoded as a result of joint dysfunction and altered afferent input, the cerebellum must adjust to new encodings that dictate the body schema and affect proper execution of the motor task” (p. 529).

 

“Motor sequence learning tasks have been previously shown to induce plasticity within the circuitry of both the motor cortexand the cerebellum…Neck manipulation [chiropractic spinal adjustments] has also been shown to provide a modulatory effect on the motor cortex by reducing the amount of intracortical inhibition.” (Daligadu et al., 2013, p. 533).

 

“This study further adds to the literature by demonstrating an alteration in cerebellar modulation of motor output in SCNP [sub-clinical neck pain] patients when they received a manipulation-based chiropractic treatment before performing motor sequence learning.In the healthy control group, there was no change in CBI seen following motor sequence learning alone” (Daligadu et al., 2013, p. 534).

 

“If the motor sequence learning task had a significant effect on the cerebellum in this group of participants due to their neck pain and altered sensorimotor integration, then it is possible that a decreased level of CBI [cerebellar inhibition] output to the motor cortex would result in an increase in SICI [short-intracortical inhibition]” (Daligadu et al., 2013, p. 534). The significance of this study is that it suggests that the chiropractic spinal adjustment improves not just neck dysfunction, but through plasty changes in the cerebellum, there is resultant motor learning and increased function. 

 

CONCLUSION

 

Based upon the scientific evidence, chiropractic spinal adjustments stimulate mechanoreceptors and nociceptors of the spinal joints resulting in afferent discharges and subsequently causing central modulation with an effect at the cord and brain levels. This causes pain reductions and secondary hyperalgesia (pain reduction in remote regions) which appears to be due to central sensitization of the spinal dorsal horn neurons,while primary hyperalgesia is caused by nociceptor sensitization.

 

This verifies that chiropractic adjustments influence the peripheral nervous system and the central nervous system. In the central nervous system, chiropractic spinal adjustments reduce pain by effecting the thalamus and descending central pain pathways.

 

Chiropractic spinal adjustments also create functional changes in multiple regions of the brain based upon multiple outcome measures that are measureable and reproducible. The areas of the brain affected by chiropractic adjustments effect the following functions: emotions, learning, motivation, memory, consciousness, homeostasis, perception, motor control, self-awareness, cognitive function, voluntary movements, decision making, touch, temperature, pain of the skin- epithelial tissue-skeletal muscles-bones-internal organs and cardiovascular system. This has far reaching effects in setting the foundation for understanding how the adjustment works in systemic and autonomic changes by being able to measure and reproduce functional changes within the brain as direct sequellae.

 

The evidence also reveals that only chiropractic adjustments (high velocity-low amplitude) render these findings and mobilization of joints conclusively do not. In addition, muscle impairment does not automatically improve with symptoms abating creating the necessity for both short and long-term care. This indicates that the deficits in proprioception and motor control, rather than the pain itself, may be the main factors defining the clinical picture and chronicity of various chronic pain conditions.

 

References:

1. Lantz, C. A. (1995). A review of the evolution of chiropractic concepts of subluxation. Topics in Clinical Chiropractic, 2(2). Retrieved from http://www.chiro.org/LINKS/FULL/A_Review_of_the_Evolution.shtml

2. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. Journal of Electromyography Kinesiology, 22(5), 752-767.

3. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons. Journal of Manipulative and Physiological Therapeutics, 37(5), 277-286.

4. Thalamus. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Thalamus

5. Mohammadian, P., Gonsalves, A., Tsai, C., Hummel, T., & Carpenter, T. (2004). Areas of capsaicin-induced secondary hyperalgesia and allodynia are reduced by a single chiropractic adjustment: A preliminary study. Journal of Manipulative and Physiological Therapeutic, 27(6), 381-387.

6. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627.

7. Daligadu, J., Haavik, H., Yielder, P. C., Baarbe, J., & Murphy, B. (2013). Alterations in coritcal and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. Journal of Manipulative and Physiological Therapeutics, 36(8), 527-537.

 

 

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University Of Bridgeport College Of Chiropractic, an Adjunct Assistant Professor of Clinical Sceinces at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the legal community (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at 631-786-4253.

 

Dr. Bill Owens is presently in private practice in Buffalo and Rochester NY and has created chiropractic as the primary spine care referral for the primary care medical community and emergency rooms in both regions.  He is an Associate Adjunct Professor at the State University of New York at Buffalo School of Medicine and Biomedical Sciences and is an Adjunt Assistant Professor of Clinical Sceinces at the University of Bridgeport, College of Chiropractic and Texas Chiropractic College.  He also works directly with doctors of chiropractic to help them build relationships with medical providers in their community. He can be reached at www.mdreferralprogram.com or 716-228-3847  

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function