Chiropractic and Successful Outcomes with Chronic Obstructive Pulmonary Disease

 

By: Mark Studin

William J. Owens

 

A report on the scientific literature

 

Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable disease that makes it difficult to empty air out of the lungs. This difficulty in emptying air out of the lungs (airflow obstruction) can lead to shortness of breath or feeling tired because you are working harder to breathe. COPD is a term that is used to include chronic bronchitis, emphysema, or a combination of both conditions. Asthma is also a disease where it is difficult to empty the air out of the lungs, but asthma is not included in the definition of COPD. It is not uncommon, however for a patient with COPD to also have some degree of asthma. Chronic bronchitis is a condition of increased swelling and mucus (phlegm or sputum) production in the breathing tubes (airways). Airway obstruction occurs in chronic bronchitis because the swelling and extra mucus causes the inside of the breathing tubes to be smaller than normal. The diagnosis of chronic bronchitis is made based on symptoms of a cough that produces mucus or phlegm on most days, for three months, for two or more years (after other causes for the cough have been excluded). Emphysema is a condition that involves damage to the walls of the air sacs (alveoli) of the lung. Normally there are more than 300 million alveoli in the lung. The alveoli are normally stretchy and springy, like little balloons. Like a balloon, it takes effort to blow up normal alveoli; however, it takes no energy to empty the alveoli because they spring back to their original size. In emphysema, the walls of some of the alveoli have been damaged. When this happens, the alveoli lose their stretchiness and trap air. Since it is difficult to push all of the air out of the lungs, the lungs do not empty efficiently and therefore contain more air than normal. This is called air trapping and causes hyperinflation in the lungs. The combination of constantly having extra air in the lungs and the extra effort needed to breathe results in a person feeling short of breath. Airway obstruction occurs in emphysema because the alveoli that normally support the airways open cannot do so during inhalation or exhalation. Without their support, the breathing tubes collapse, causing obstruction to the flow of air. (http://www.thoracic.org/patients/patient-resources/resources/copd-intro.pdf)

Wearing, Beaumont, Forbes, Brown and Engler (2016) reported:

 

Extrapulmonary effects, such as skeletal muscle dysfunction, affect the severity of the disease and provide a potential target for therapeutic intervention. An estimated 18%–36% of people with COPD experience skeletal muscle dysfunction at a level that affects exercise capacity and dyspnea levels, both predictors of mortality in COPD. Because exercise capacity is a measure of the amount of exercise that can be performed before the onset of leg fatigue or exercise-limiting dyspnea, a decrease in capacity has been associated with poorer quality of life and higher hospitalization rates. Nonpharmacologic interventions benefit people with COPD.  For example, pulmonary rehabilitation (PR) is considered to be a well-developed, multidisciplinary approach to managing many extrapulmonary effects associated with COPD.  However, PR has little clinical effect on lung function. Similarly, research into the effect of acupuncture has shown that this modality has little effect on long-term lung function despite helping improve dyspnea levels and exercise tolerance. (pgs. 108-109)

  

The authors have had long-term experience in treating COPD utilizing a portion of the "Evidence-based behavioral practice“ model in observing results from patients over the past 3 decades.

Evidence-based behavioral practice(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses (Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

In the observation component of the evidence-based behavioral practice model, the authors have observed COPD patients realize increased tidal volumes, forced vital volume, forced expiratory volume and residual increased volumes performed on a Renaissance Spirometer by Puritan-Bennett in the 1990’s, post chiropractic spinal adjustment. These results (the printouts have since been discarded) were consistent with both acute and chronic emphysema patients with multiple etiologies and were verified both with the spirometer volumes and the patient’s feedback. Due to limited resources (and research inexperience) of the authors in the 1990’s, this information was limited to patients who had similar issues at the local clinical level. Nonetheless, the results were consistent and reproducible, however the was no literature to corroborate or validate these findings at the time.

In contemporary literature, there is now a basis to support the authors previous findings. Wearing, Beaumont, Forbes, Brown and Engler (2016) continued:

 

This systematic review updates the results from a previous review and is the first to focus on evidence of the effect of administering SMT (spinal manual treatment of the chiropractic spinal adjustment) in conjunction with other interventions in the management of COPD. Improvements in lung function (increases in forced expiratory and forced vital volume; decrease in residual volume) and exercise capacity (increase in 6-minute walking test) were reported in three random clinical trials following a combination of SMT and exercise. While these findings were recorded in pilot and preliminary trials, they represent preliminary evidence that the combination of SMT with exercise may be more beneficial to people with COPD than exercise or SMT alone. Furthermore, the results provide additional information to the review by Heneghan and colleagues; however, the findings of this review contrast with the earlier conclusion that no evidence supported or refuted the use of MT on patients with COPD.

 

In conclusion, this appears to be the first systematic review to investigate the evidence for administering SMT in conjunction with other modalities, such as exercise, on people with COPD. The exclusion of such combinations may explain the disparity in findings between this review and the review by Heneghan et al., who found no evidence to support or refute the use of MT in the management of COPD. The importance of increasing exercise capacity, even by indirect methods such as increasing thoracic mobility should not be underestimated because exercise capacity is a predictor of mortality in COPD. As pulmonary rehabilitation does not improve lung function, the current findings may have wider implications if repeated in a larger cohort. (pg. 113)

 

Although Wearing et. Al (2016) acknowledged that this study was very limited in numbers and acknowledged that there could be benefit through co-management with exercise, the results mimicked the findings realized by the authors in the 1990’s.  In addition, Wearing et. Al.  reported no significant adverse effects of chiropractic care and is consistent with previous reports that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5).

 

References:

  1. American Thoracic Society (2017) Retrieved from: http://www.thoracic.org/patients/patient-resources/resources/copd-intro.pdf
  2. Wearing, J., Beaumont, S., Forbes, D., Brown, B., & Engel, R. (2016). The use of spinal manipulative therapy in the management of chronic obstructive pulmonary disease: a systematic review.The Journal of Alternative and Complementary Medicine,22(2), 108-114.
  3. Evidence-Based Practice. (n.d.). In Wikipedia. Retrieved January 3, 2012, from http://en.wikipedia.org/wiki/Evidence-based_practice
  1. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

More Research