Scott Meide DC , CCEP
1233 Lane Ave. South, #15, Jacksonville, Florida, 32205
Phone: 904-503-8382
Fax: 904-329-4064
jsicenterzo@gmail.com
SELECTED OCCUPATIONAL HISTORY
Chiropractor and Clinical Director, Jacksonville Spine & Injury Center, PL, Jacksonville, Florida, 2019 - Present
4 year academic sabbatical from the chiropractic profession, 2014 - 2018
Chiropractor and Clinical Director, Jacksonville Spine & Injury Center, PL, Jacksonville, Florida, 2003 - 2014
Chiropractor and Clinical Director, Jacksonville Injury Center, LLC, Jacksonville, Florida, 2002 - 2003
EDUCATION AND LICENSURE
Doctor of Chiropractic, Licensed in the State of Florida, License # CH 8121, 2001-Present
Doctorate of Chiropractic, Life University School of Chiropractic, Marietta, Georgia, 2000
Internship, Life University School of Chiropractic Outpatient Facility, Marietta, Georgia, 1999 - 2000
National Board of Chiropractic Examiners, Part I, 1999
National Board of Chiropractic Examiners, Part II, 1999
National Board of Chiropractic Examiners, Part III, 2000
National Board of Chiropractic Examiners, Part IV, 2000
National Board of Chiropractic Examiners, Physiotherapy, 1998
Bachelor of Science in Health Science Education, University of Florida, Gainesville, Florida, 1996

SELECTED POST-GRADUATE EDUCATION, CERTIFICATIONS AND DIPLOMATES

Diagnosing and Case Management, The requirements for diagnosing based upon an initial evaluation and management encounter ranging from a 99202 – 99205 that includes comorbidities, non-musculoskeletal, and sequellae to injury diagnosis. Academy of Chiropractic Post Doctorate Division, Long Island, New York, 2020
Diagnosing and Case Management, The requirements for diagnosing imaging inclusive of static x-rays, biomechanical x-rays, and MRI. Documenting the clinical findings of disc bulge, herniation, protrusion, extrusion, and fragmentation. Coding, diagnosing, and documenting individual treatment encounters in the clinical setting. Academy of Chiropractic Post-Doctorate Division, Long Island, New York, 2020
Forensic Documentation-Report Writing, Report writing in a medical-legal case inclusive of causality, bodily injury, persistent functional loss and restrictive sequela from trauma. Demonstratively documenting bodily injury utilizing models, graphs and patient image of x-ray and advanced imaging Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Demonstrative Documentation, Demonstratively reporting spinal biomechanical failure and spinal compensation. How in a medical-legal environment to ethically report pre-existing injuries vs causally related current injuries and what is permissible in a legal proceeding Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Reporting Direct Opinions , Causality, bodily injury and persistent functional losses documented and reported in a medical-legal environment as your direct opinion. Avoiding hearsay issues to ensure ethical relationships Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Initial, Final and Collaborative Reporting, Preparing demonstrative documentation in a medical-legal case ensuring that you are familiar with all other treating doctor’s reports. Correlating your initial and evaluation and management (E&M) report and your follow-up E&M reports with the narrative upon maximum medical improvement documenting continuum of care Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Qualifications and Preparation of Documentation, How to prepare your documentation for courtroom testimony and ensuring your qualifications are documented properly on an admissible, professional curriculum vitae. How to include indexed peer-reviewed literature in medical-legal documentation Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Reporting Patient History and Credentials, Preparing patient history in a medical-legal case based upon your initial intake forms and understanding the work, social, academic, household and social activities of your patient. Understanding and explaining your doctoral and post-doctoral credentials in the courtroom Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Reporting Chiropractic Care and Injured Anatomy, Preparing demonstrative documentation in a medical-legal case to report the bodily injuries of your patients , inclusive of loss of function and permanent tissue pathology Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Reporting Temporary vs. Permanent Issues, Preparing documentation in a medical-legal case ensuring that you can communicate permanent vs. temporary functional losses and permanent vs. temporary tissue pathology. How to maintain and explain ethical relationships in medical-legal cases Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Reporting Bodily Injury, How to report bodily injury and functional losses as supported by your credentials in a medical-legal case, Clinically correlating causality and permanent tissue pathology as sequela to trauma Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Forensic Documentation- Record Review and Documentation Reporting, How to report records of collaborative treating doctors and communicating your scope of practice in the management of your case. How to ethically report your role as a doctor in medical-legal cases Cleveland University, Kansas City, Academy of Chiropractic, Post-Doctoral Division, Long Island, New York, 2020
Electrodiagnostics: Electromyogram/Nerve Conduction Velocity (EMG/NCV), Diagnosis & Interpretation: Anatomy and Physiology of Electrodiagnostics, An in-depth review of basic neuro-anatomy and physiology dermatomes and myotomes to both the upper and lower extremities and the neurophysiology of axons and dendrites along with the myelin and function of saltatory for conduction. The sodium and potassium pump’s function in action potentials Academy of Chiropractic Post-Doctorate Division, Long Island, New York, 2020
Electrodiagnostics: Electromyogram/Nerve Conduction Velocity (EMG/NCV), Diagnosis & Interpretation: Nerve Conduction Velocity (NCV) Part 1, Nerve conduction velocity testing, the equipment required and the specifics of motor and sensory testing. This section covers the motor and sensory NCV procedures and interpretation including latency, amplitude (CMAP) physiology and interpretation including the understanding of the various nuances of the wave forms Academy of Chiropractic Post-Doctorate Division, Long Island, New York, 2020
Electrodiagnostics: Electromyogram/Nerve Conduction Velocity (EMG/NCV), Diagnosis & Interpretation: Nerve Conduction Velocity (NCV) Part 2, Compound motor action potentials (CMAP) and sensory nerve action potentials (SNAP) testing and interpretation including the analysis and diagnosis of the wave forms. It also covers compressive neuropathies of the median, ulnar and posterior tibial nerves; known as carpal tunnel, cubital tunnel and tarsal tunnel syndromes. This section offers interpretation algorithms to help understand the neurodiagnostic conclusions Academy of Chiropractic Post-Doctorate Division, Long Island, New York, 2020
Electrodiagnostics: Electromyogram/Nerve Conduction Velocity (EMG/NCV), Diagnosis & Interpretation: Needle Electromyogram (EMG) Studies, The EMG process, inclusive of how the test is performed and the steps required in planning and electromyographic study. This covers the spontaneous activity of a motor unit action potential, positive sharp waves and fibrillations. The insertional activity (both normal and abnormal), recruitment activity in a broad polyphasic presentation and satellite potentials. This covers the diagnosing of patterns of motor unit abnormalities including neuropathic demyelinated neuropathies along with acute myopathic neuropathies. This section also covers the ruling out of false positive and false negative results Academy of Chiropractic Post-Doctorate Division, Long Island, New York, 2020
Electrodiagnostics: Electromyogram/Nerve Conduction Velocity (EMG/NCV), Diagnosis & Interpretation: Overview of EMG and NCV Procedures, Results, Diagnoses and Documentation, The clinical incorporation of electrodiagnostic studies as part of a care plan where neuropathology is suspected. It also covers how to use electrodiagnostics in a collaborative environment between the chiropractor as the primary spine care provider and the surgeon, when clinically indicated. This section covers sample cases and health conclude and accurate treatment plans based upon electro-neurodiagnostic findings when clinically indicated Academy of Chiropractic Post-Doctorate Division, Long Island, New York, 2020
Stroke Anatomy and Physiology: Brain Vascular Anatomy, The anatomy and physiology of the brain and how blood perfusion effects brain function. A detailed analysis of the blood supply to the brain and the physiology of ischemia. PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2018
Stroke Anatomy and Physiology: Stroke Types and Blood Flow, Various types of stroke identifying ischemia, hypoperfusion, infarct and penumbra zones and emboli. Cardiac etiologies and clinical features as precursor to stroke with associated paradoxical emboli and thrombotic etiologies. Historical and co-morbidities that have etiology in stroke inclusive of diabetes, coagulopathy, acquired and hereditary deficiencies. PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2018
Stroke Principles of Treatment: An Overview for the Primary Care Provider, Stroke type and treatments performed by vascular specialists. The goals of treatment with the physiology of the infarct and penumbra zones and the role of immediate triage in the primary care setting. Detailing the complications of stroke and future care in the chiropractic, primary care or manual medicine clinical setting. PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo Jacobs School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2018
Clinical Evaluation and Protocols for Identifying Stroke Risk, The neurological history and examination for identifying stroke risks with a focus on supra and infratentorial regions, upper and lower motor lesions, cranial nerve signs, spinal cord pathology, motor and sensory pathology and gait abnormalities. Examining genetic and family histories along with dissection risk factors. Stroke orthopedic testing and clinical guidelines pertaining to triage for the primary care provider. PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2018
Primary Spine Care Symposium - Interprofessional Spine Care, Clinical analysis of anatomic versus biomechanical spine pain and clinical triage protocols. Relating current research trends in the Whole Spine Model of patient including normal versus abnormal sagittal curvature in the adolescent and adult spine, pelvic incidence as a parameter for sagittal balance in the human spine and current methods of assessment. Patient centered approach to Evidenced Based Spine care with a focus on diagnosis, prognosis and triage of the spine pain patient. Texas Chiropractic College Post-Doctoral Division, Academy of Chiropractic Post-Doctoral Division, Melville, New York, 2017
Primary Spine Care Symposium – Epidemiology of Spine Pain, Review of the current Centers for Disease Control [CDC} data on the frequency of musculoskeletal pain in the United States population with emphasis on pain of spinal origin. CDC guidelines on opioid medication were discussed and correlated to persistent pain syndromes. Research was reviewed showing the importance of managing the spine pain patient properly from the entry point of care with a concentration on maintenance of spinal biomechanics. Texas Chiropractic College Post-Doctoral Division, Academy of Chiropractic Post-Doctoral Division, Melville, New York, 2017
Primary Spine Care Symposium- Connective Tissue and Spinal Disc Pathology, The morphology and pathology of connective tissue, inclusive of spinal disc disorders and prognosticating wound repair with permanency implications. Disc bulge, herniation, protrusion and extrusion classifications based upon contemporary literature and how to age-date disc pathology. Texas Chiropractic College Post-Doctoral Division, Academy of Chiropractic Post-Doctoral Division, Melville, New York, 2017
Primary Spine Care Symposium – Physiology and Anatomy of Spinal Manual Adjusting, Understanding the role of mechanoreceptors, proprioceptors and nociceptors with facets, ligaments, tendons and muscles in aberrant spinal biomechanics. MRI and imaging studies of decompressing via a chiropractic spinal adjustment of the bio-neuro-mechanical lesion and its effects on the central nervous system both reflexively and supratentorally. Texas Chiropractic College Post-Doctoral Division, Academy of Chiropractic Post-Doctoral Division, Melville, New York, 2017
Primary Spine Care Symposium – Medical-Legal Documentation, The contemporary documentation required in a medical-legal environment that is evidenced based and meets the standards of the courts and academia. Utilizing the scientific data to support a diagnosis, prognosis and treatment plan while meeting the admissibility standards based upon a professional’s credentials. Texas Chiropractic College Post-Doctoral Division, Academy of Chiropractic Post-Doctoral Division, Melville, New York, 2017
MRI History and Physics, Magnetic fields, T1 and T2 relaxations, nuclear spins, phase encoding, spin echo, T1 and T2 contrast, magnetic properties of metals and the historical perspective of the creation of NMR and MRI. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Spinal Anatomy and Protocols, Normal anatomy of axial and sagittal views utilizing T1, T2, 3D gradient and STIR sequences of imaging. Standardized and desired protocols in views and sequencing of MRI examination to create an accurate diagnosis in MRI. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Disc Pathology and Spinal Stenosis, MRI interpretation of bulged, herniated, protruded, extruded, sequestered and fragmented disc pathologies in etiology and neurological sequelae in relationship to the spinal cord and spinal nerve roots. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Spinal Pathology, MRI interpretation of bone, intradural, extradural, cord and neural sleeve lesions. Tuberculosis, drop lesions, metastasis, ependymoma, schwanoma and numerous other spinal related tumors and lesions. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Methodology of Analysis, MRI interpretation sequencing of the cervical, thoracic and lumbar spine inclusive of T1, T2, STIR and 3D gradient studies to ensure the accurate diagnosis of the region visualized. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Clinical Application, The clinical application of the results of space occupying lesions. Disc and tumor pathologies and the clinical indications of manual and adjustive therapies in the patient with spinal nerve root and spinal cord insult as sequelae. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Protocols Clinical Necessity, MRI slices, views, T1, T2, STIR axial, stacking, FFE, FSE and sagittal images. Clinical indication for the utilization of MRI and pathologies of disc in both trauma and non-trauma sequellae, including bulge, herniation, protrusion, extrusion and sequestration. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Interpretation of Lumbar Degeneration/Bulges, MRI slices, views, T1, T2, STIR axial, stacking, FFE, FSE and sagittal images in the interpretation of lumbar degeneration. With the co-morbidities and complications of stenosis, pseudo-protrusions, cantilevered vertebrate, Schmorl's nodes and herniations. Central canal and cauda equina compromise interpretation with management. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Interpretation of Lumbar Herniations, MRI slices, views, T1, T2, STIR axial, stacking, FFE, FSE and sagittal images in the interpretation of lumbar herniations. With the co-morbities and complications of stenosis, pseudo-protrusions, cantilevered vertebrate, Schmorl's nodes and herniations. Morphology of lumbar disc pathologies of central and lateral herniations, protrusions, extrusions, sequestration, focal and broad based herniations are defined and illustrated. Central canal and cauda equina compromise interpretation with management. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Interpretation of Cervical Degeneration/Bulges, MRI slices, views, T1, T2, STIR axial, stacking, FFE, FSE and sagittal images in the interpretation of cervical degeneration. With the co-morbidities and complications of stenosis, pseudo-protrusions, cantilevered vertebrate, Schmorl's nodes and herniations. Spinal cord and canal compromise interpretation with management. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Interpretation of Cervical Herniations, MRI slices, views, T1, T2, STIR Axial, FFE, FSE and sagittal images in the interpretation of lumbar herniations. With the co-morbidities and complications of stenosis, pseudo-protrusions, cantilevered vertebrate, Schmorl's nodes and herniations. morphology of lumbar disc pathologies of central and lateral herniations, protrusions, extrusions, sequestration, focal and broad based herniations are defined and illustrated. Spinal cord and canal compromise interpretation with management. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
MRI Interpretation of Degenerative Spine and Disc Disease with Overlapping Traumatic Insult to Both Spine and Disc, MRI slices, views, T1, T2, STIR Axial, FFE, FSE and sagittal images in the interpretation of degenerative spondylolesthesis, spinal canal stenosis, Modic type 3 changes, central herniations, extrusions, compressions, nerve root compressions, advanced spurring and thecal sac involvement from an orthopedic, emergency room, chiropractic, neurological, neurosurgical, physical medicine perspective. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Certification in MRI Spine Cervical-Lumbar Bulge and Herniation Interpretation, (#1146), 2016
Neurodiagnostics, Imaging Protocols and Pathology of the Trauma Patient, An in-depth understanding of the protocols in triaging and reporting the clinical findings of the trauma patient. Maintaining ethical relationships with the medical-legal community. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Diagnostics, Risk Factors, Clinical Presentation and Triaging the Trauma Patient, An extensive understanding of the injured with clinically coordinating the history, physical findings and when to integrate neurodiagnostics. An understanding on how to utilize emergency room records in creating an accurate diagnosis and the significance of “risk factors” in spinal injury. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Crash Dynamics and Its Relationship to Causality, An extensive understanding of the physics involved in the transference of energy from the bullet car to the target car. This includes G's of force, newtons, gravity, energy, skid marks, crumple zones, spring factors, event data recorder and the graphing of the movement of the vehicle before, during and after the crash. Determining the clinical correlation of forces and bodily injury. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
MRI, Bone Scan and X-Ray Protocols, Physiology and Indications for the Trauma Patient, MRI interpretation, physiology, history and clinical indications, bone scan interpretation, physiology and clinical indications, x-ray clinical indications for the trauma patient. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Neurodiagnostic Testing Protocols, Physiology and Indications for the Trauma Patient, Electromyography (EMG), Nerve Conduction Velocity (NCV), Somato Sensory Evoked Potential (SSEP), Visual Evoked Potential (VEP), Brain Stem Auditory Evoked Potential (BAER) and Visual-Electronystagmosgraphy (V-ENG) interpretation, protocols and clinical indications for the trauma patient. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Documentation and Reporting for the Trauma Victim, Understanding the necessity for accurate documentation and diagnosis utilizing the ICD-9 and the CPT to accurately describe the injury through diagnosis. Understanding and utilizing state regulations on reimbursement issues pertaining to healthcare. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Documenting Clinically Correlated Bodily Injury to Causality, Understanding the necessity for accurate documentation, diagnosis and clinical correlation to the injury when reporting injuries in the medical-legal community. Documenting the kinesiopathology, myopathology, neuropathology, and pathophysiology in both a functional and structural paradigm. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Spinal Trauma Pathology, Triage and Connective Tissue Injuries and Wound Repair, Triaging the injured and differentially diagnosing both the primary and secondary complaints. Connective tissue injuries and wound repair morphology focusing on the aberrant tissue replacement and permanency prognosis potential. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering: Cartesian System, The Cartesian Coordinate System from the history to the application in the human body. Explanation of the x, y and z axes in both translation and rotations (thetas) and how they are applicable to human biomechanics. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering: Cervical Pathobiomechanics, Spinal biomechanical engineering of the cervical and upper thoracic spine. This includes the normal and pathobiomechanical movement of both the anterior and posterior motor units and normal function and relationship of the intrinsic musculature to those motor units. Nomenclature in reporting normal and pathobiomechanical findings of the spine. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering: Lumbar Pathobiomechanics, Spinal biomechanical engineering of the lumbar spine. This includes the normal and pathobiomechanical movement of both the anterior and posterior motor units and normal function and relationship of the intrinsic musculature to those motor units. Nomenclature in reporting normal and pathobiomechanical findings of the spine. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanics in Trauma, To utilize whiplash associated disorders in various vectors of impact and whiplash mechanisms in determining pathobiomechanics. To clinically correlate annular tears, disc herniations, fractures, ligament pathology and spinal segmental instability as sequellae to pathobiomechanics from trauma. The utilization of digital motion x-ray in diagnoising normal versus abnormal facet motion along with case studies to understand the clinical application. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering & Organizational Analysis, Integrating spinal biomechanics and pathobiomechanics through digitized analysis.The comparison of organized versus disorganized compensation with regional and global compensation. Correlation of the vestibular, occular and proprioceptive neurological integration in the righting reflex as evidenced in imaging. Digital and numerical algorithm in analyzing a spine. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering: Cervical Digital Analysis, Digitizing and analyzing the cervical spine in neutral, flexion and extension views to diagnose pathobiomechanics. This includes alteration of motion segment integrity (AMOSI) in both angular and translational movement. Ligament instability/failure/pathology are identified all using numerical values and models. Review of case studies to analyze pathobiomechanics using a computerized/numerical algorithm. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering: Lumbar Digital Analysis, Digitalizing and analyzing the lumbar spine images to diagnose pathobiomechanics. This includes anterior and posterior vertebral body elements in rotatioal analysis with neutral, left and right lateral bending in conjunction with gate analysis. Ligament instability/failure/pathology is identified all using numerical values and models. Review of case studies for analysis of pathobiomechanics using a computerized/numerical algorithm along with corrective guidelines. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Biomechanical Engineering: Full Spine Digital Analysis, Digitalizing and analyzing the full spine images to diagnose pathobiomechanics as sequellae to trauma in relation to ligamentous failure and disc and vertebral pathology as sequellae. This includes anterior and posterior vertebral body elements in rotatioal analysis with neutral, left and right lateral bending in conjunction with gate analysis. Ligament instability/failure/pathology is identified all using numerical values and models. Review of case studies for analysis of pathobiomechanics using a computerized/numerical algorithm along with corrective guidelines. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Accident Reconstruction: Terms, Concepts and Definitions, The forces in physics that prevail in accidents to cause bodily injury. Quantifying the force coefficients of vehicle mass and force vectors that can be translated to the occupant and subsequently cause serious injury. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Accident Reconstruction: Causality, Bodily Injury, Negative Acceleration Forces, Crumple Zones and Critical Documentation, Factors that cause negative acceleration to zero and the subsequent forces created for the vehicle that get translated to the occupant. Understanding critical documentation of hospitals, ambulance reports, doctors and the legal profession in reconstructing an accident. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Accident Reconstruction: Skid Marks, Time, Distance, Velocity, Speed Formulas and Road Surfaces, The mathematical calculations necessary utilizing time, distance, speed, coefficients of friction and acceleration in reconstructing an accident. The application of the critical documentation acquired from an accident site. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Accident Reconstruction: Research, Causality and Bodily Injury, Delta V issues correlated to injury and mortality, side impact crashes and severity of injuries, event data recorder reports correlated to injury, frontal impact kinematics, crash injury metrics with many variables and inquiries related to head restraints. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Impairment Rating, The understanding and utilization of the protocols and parameters of the AMA Guide to the Evaluation of Permanent Impairment 6th Edition. Spine, neurological sequelae, migraine, sexual dysfunction, sleep and arousal disorders, station and gait disorders and consciousness are detailed for impairment rating. Herniated discs, radiculopathy, fracture, dislocationa and functional loss are also detailed in relation to impairment ratings. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Mild Traumatic Brain Injury, Traumatic Brain Injury and Concussion, Brain and head physiology, brain mapping and pathology as a sequella to trauma. Traumatic brain injury, mild traumatic brain injury, axonal shearing, diffuse axonal injury and concussion are detailed in etiology and clinically. Clinical presentation, contemporary and advanced diagnostic imaging and electrodiagnostics are detailed in analysis to create a differential diagnosis. Balance disorders that often occur as a result of trauma are also explored from clinical presentation to advanced imaging and differential diagnosis. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Spinal Trauma Pathology: Ligament Anatomy and Injury Research and Spinal Kinematics, Spinal ligamentous anatomy and research focusing on wound repair, future negative sequelae of abnormal tissue replacement and the resultant aberrant kinematics and spinal biomechanics of the spine. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Trauma Pathology: Spinal Biomechanics, Central Nervous System and Spinal Disc Nomenclature, The application of spinal biomechanical engineering models in trauma and the negative sequelae it has on the central nervous system inclusive of the lateral horn, periaqueductal gray matter, thalamus and cortices involvement. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Trauma Pathology: Biomechanics of Traumatic Disc Bulge and Age Dating Herniated Disc Pathology, The biomechanics of traumatic disc bulges as sequella from trauma and the comorbidity of ligamentous pathology. Age-dating spinal disc pathology in accordance with Wolff’s Law. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Trauma Pathology: Clinical Grand Rounds, The review of case histories of mechanical spine pathology and biomechanical failures inclusive of case histories, clinical findings and x-ray and advanced imaging studies. Assessing comorbidities in the triage and prognosis of the injured. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Trauma Pathology: Research Perspectives, The review of current literature standards in spinal trauma pathology and documentation review of biomechanical failure, ligamentous failure and age-dating disc pathology. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Spinal Trauma Pathology, Triage and Connective Tissue Injuries and Wound Repair, Triaging the injured and differentially diagnosing both the primary and secondary complaints. Connective tissue injuries and wound repair morphology focusing on the aberrant tissue replacement and permanency prognosis potential. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Medical-Legal-Insurance Documentation, Accurate and compliant documentation of history and clinical findings inclusive of functional losses, loss of activities of daily living, duties under duress and permanent loss of enjoyment of life. Prognosing static vs. stable care, gaps in care both in the onset and in the middle of passive care with a focus on detailed diagnosing. The integration of chiropractic academia, the court system and the insurance reimburser’s requirements for complete documentation. Texas Chiropractic College, Academy of Chiropractic Post Doctoral Division, Recognized by the PACE Program of the Federation of Chiropractic Licensing Boards, Long Island, New York, 2016
Orthopedic Testing: Principles, Clinical Application and Triage, Integration of orthopedic testing in the clinical setting to develop a differential diagnosis. Utilizing radiographic and advanced imaging inclusive of MRI and CAT scan findings to verify tissue pathology suspected by orthopedic testing conclusions and developing a treatment plan as sequelae. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Orthopedic Testing: Cervical Spine, Integration of cervical orthopedic testing in the clinical setting to develop a differential diagnosis. Utilizing radiographic and advanced imaging inclusive of MRI and CAT scan findings to verify tissue pathology suspected by orthopedic testing conclusions and developing a treatment plan as sequelae. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Orthopedic Testing: Lumbar Spine, Integration of lumbar orthopedic testing in the clinical setting to develop a differential diagnosis. Utilizing radiographic and advanced imaging inclusive of MRI and CAT scan findings to verify tissue pathology suspected by orthopedic testing conclusions and developing a treatment plan as sequelae. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016
Orthopedic Testing: Clinical Grand Rounds, Integration of orthopedic testing in the clinical setting utilizing both simple and complex patient scenarios. It includes potential stroke, or vertebrobasilar insufficient patients and understanding the nuances in a clinical evaluation with orthopedic testing as a critical part of the evaluation and screening process. How to integrate orthopedic testing in the clinical setting utilizing both simple and complex patient scenarios. It includes potential stroke, or vertebrobasilar insufficient patients and understanding the nuances in a clinical evaluation with orthopedic testing as a critical part of the evaluation and screening process. Texas Chiropractic College, PACE Recognized by The Federation of Chiropractic Licensing Boards, ACCME Joint Providership with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Academy of Chiropractic Post-Doctoral Division, Buffalo, New York, 2016

SELECTED MEMBERSHIPS

Academy of Chiropractic, Active Trauma Team Member, 2018 - Present
Florida Chiropractic Physicians Association, Member, 2016 - Present
Florida Chiropractic Conferences, Member, 2016 - Present
Academy of Chiropractic, Member, 2016 - Present
Florida Chiropractic Association, Member, 2005 - Present
Jacksonville Chamber of Commerce, Trustee, 2019 - 2020