Chiropractic’s Mechanism in Pain Modulation and the Connection to Systemic Diseases

 

A Literature Review and Synthesis on the Possible Effects of Chiropractic on Cancers, Systemic Diseases, Mental and Social Disorders and Sexual Behavior

A report on the scientific literature 


 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 William J. Owens DC, DAAMLP

 -----

Citation: Studin M., Owens W. (2016) Chiropractic’s Mechanism in Pain Modulation and the Connection to Systemic Disease, Dynamic Chiropractor 34(3) 26-33

 

Chiropractors for over a century have been called “quacks” and “charlatans” for reporting what they have observed in their patients as a result of their care. The maladies that chiropractors have witnessed the disappearance of include cancers, eczema, infertility, high blood pressure, diabetes, arthritis, emotional disturbances and many more. Historically, this has brought the “ire” of organized medicine and other splinter groups to attack the chiropractic profession with the mantra of “there is no scientific evidence” to support these allegations. One author of this paper, Dr Studin, has spent 35 years experiencing this phenomenon where patients reported the aforementioned maladies and a long list of other diseases which “miraculously” disappeared with treatment.

 

 

To be clear, this wasn’t an isolated instance, but rather year after year that and in meetings with other chiropractor’s similar stories were heard.  However, sharing these findings amongst chiropractors was much easier than sharing it with the healthcare community because of the persecution against chiropractors and the outcry of “quackery.” In fact, many of the chiropractic practitioners who witnessed these results felt the best way to approach this was to only discuss this with patients.  They purposefully avoided any other healthcare providers in these conversations because there was no scientific evidence to back up the repeated observations.

 

 

To the medical community, these were religious type beliefs and we, as chiropractors, were proselytizing our religion of chiropractic on patients and the community. Based on the lack of published evidence, their allegations against us was not without merit albeit misguided and fueled in part by economics. However, medicine saw beliefs based upon observations on the chiropractic side and medicine required published evidence for verification no matter the claims and testimonials from an ever-increasing segment of the public. Today, the benefits of chiropractic care have remained constant with the same stream of patients getting well. However, the evidence has now started to support these findings and the chiropractic profession has gone beyond proselytizing our beliefs to being able to cite specific research that supports and justifies chiropractic care as part of mainstream healthcare. We can now share our results, which are consistent with the scientific literature that often has been discovered or proven beyond the chiropractic profession.

 

 

NOTE: Although the following evidence verifies what our profession has been witnessing over the last decade, please understand that the research is just beginning to show evidence and much more is needed to bring our profession to where it needs to be. As a result, every practitioner and every chiropractic academic institution needs to both support and be involved in research. Our professional institutions and their research departments MUST take an active and serious role in producing and publishing research. Otherwise, it will come from another source such as osteopathy or physical therapy and prevent chiropractic from taking it’s unique place in healthcare.

 

Chiropractic Adjustment and Central Nervous System Changes

 

We have held for quite some time that studying how the adjustment works for the treatment of pain is the first step in truly understanding how the chiropractic adjustment affects systemic diseases. It has been shown that the chiropractic adjustment has a direct effect on many regions in the brain where pain mediation arises. As evidence, Reed, Pickar, Sozio, and Long (2014) reported:

…forms of manual therapy have been clinically shown to increase mechanical pressure pain thresholds (i.e., decrease pain sensitivity) in both symptomatic and asymptomatic subjects.Cervical spinal manipulation has been shown to result in unilateral as well as bilateral mechanical hypoalgesia [reduction in pain]. Compared with no manual therapy, oscillatory spinal manual therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1, and L3 in individuals with rheumatoid arthritis. The immediate and widespread hypoalgesia associated with manual therapy treatments has been attributed to alterations in peripheral and/or central pain processing including activation of descending pain inhibitory systems.

Increasing evidence from animal models suggests that manual therapy activates the central nervous system and, in so doing, affects areas well beyond those being treated. (p. 277)

 

 

Reed et al. (2014) continued stating, “Several clinical studies indicate that spinal manipulation [chiropractic spinal adjustment] alters central processing of mechanical stimuli evidenced by increased pressure pain thresholds and decreased pain sensitivity in asymptomatic and symptomatic subjects following manipulation” (p. 282).

 

In another paper, Gay, Robinson, George, Perlstein, and Bishop (2014) reported, “With the evidence supporting efficacy of MT [manual therapy or chiropractic spinal adjustments] to reduce pain intensity and pain sensitivity, it is reasonable to assume that the underlying therapeutic effect of MT is likely to include a higher cortical component” (p. 615).   The authors continued by stating, “…pain-free volunteers processed thermal stimuli applied to the hand before and after thoracic spinal manipulation (a form of MT).  What they found was that after thoracic manipulation, several brain regions demonstrated a reduction in peak BOLD [blood-oxygen-level–dependent] activity. Those regions included the cingulate, insular, motor, amygdala and somatosensory cortices, and the PAG [periaqueductal gray regions]” (Gay et al., 2014, p. 615).

 

The above two studies are only a small part of a growing body of evidence showing that the chiropractic spinal adjustment directly affects the functioning of the central nervous system and is the core of pain modulation with chiropractic care and the foundation to the next level, as outlined below. 

 

The Effect of the Chiropractic Adjustment on Neuropeptides (Neurotensin-Oxytocin-Cortisol)

NOOC Axis = Neurotensin-Orexin-Oxytocin-Cortisol

Regarding neuropeptides, Burbach (2011) reports:

We know neuropeptides now for over 40 years as chemical signals in the brain. The discovery of neuropeptides is founded on groundbreaking research in physiology, endocrinology, and biochemistry during the last century and has been built on three seminal notions: (1) peptide hormones are chemical signals in the endocrine system; (2) neurosecretion of peptides is a general principle in the nervous system; and (3) the nervous system is responsive to peptide signals. These historical lines have contributed to how neuropeptides can be defined today: “Neuropeptides are small proteinaceous substances produced and released by neurons through the regulated secretory route and acting on neural substrates.” Thus, neuropeptides are the most diverse class of signaling molecules in the brain engaged in many physiological functions. (p. 1)

 

 

Simply put, neuropeptides are the transmitters that allow the brain to communicate within itself and with the rest of the body’s functions. The increase or decrease of these neuropeptides/neurotransmitters alters human physiology (function) and any action upon the body that affects the neurotransmitters can either help normalize function or conversely destroy functioning with the human body.  This is the foundation of homeostasis and, therefore, if we can affect the function of neurotransmitters, then it is safe to say we can have a level of influence on homeostasis.  This obviously ties into our founder’s observations and the beginning of chiropractic! 

 

 

In an additional paper, Plaza-Manzano et al. (2014) wrote, “Several neuropeptides, such as neurotensin, oxytocin, or orexin A have been associated with hypoalgesia and pain modulation, and it is well known that cortisol plays an analgesic role related to stress responses. Recent theories have also suggested that chronic pain could be partly maintained by maladaptive physiological responses of the organism facing a recurrent stressor, a situation related to high cortisol levels” (p. 231). The authors continued by stating, “To make better therapeutic decisions, professionals would profit from knowing whether one type of SM (adjustment) is better than others in terms of antinociceptive (authors comment: antinociceptive = pain inhibition) effects (neurotensin, orexin A, oxytocin, and cortisol). Taking these data into account, our purpose was to determine whether cervical and thoracic manipulation would induce differences in neuropeptide production or have a similar biochemical response (Plaza-Manzano et al., 2014, p. 232).

 

 

Plaza-Manzano et al. (2014) went on to say “…within-group comparisons in cervical and thoracic manipulation groups showed a significant increase in neurotensin levels immediately post-intervention compared with pre-intervention levels… At the descriptive level, an important decrease in orexin A concentration was detected after the intervention in the thoracic SM (spinal manipulation) group in comparison with the control group… the cervical SM group showed increased oxytocin values when compared with the thoracic SM group immediately post-intervention (Plaza-Manzano et al., 2014, p. 234). At 2 hours after the intervention, an increase was found only in the cervical SM group when compared with pre-intervention levels… the cervical SM group showed a significant increase in cortisol plasma concentration immediately post-intervention compared with baseline values” (Plaza-Manzano et al. 2014, p. 235). 

 

 

Neurotensin

Orexin

Oxytocin

Cortisol

Cervical Adjustment

Increased levels

Not reported

Increased levels

Increased levels

Thoracic Adjustment

Increased levels

Increased levels

No Change

Significant Decrease at

2 hours

 

 

Regarding pain Plaza-Manzano et al. (2014) stated:

It is well established that neurotensin affects the activity of oxytocin-positive cells in the supraoptic nucleus. Oxytocin is a nonapeptide that plays a major neuroendocrine role, modulating several physiological functions in mammals, like somatosensory transmission, nociception, and pain. Oxytocin is synthesized and secreted by a subpopulation of the paraventricular and supraoptic nuclei of the hypothalamus. In fact, several studies now support the idea that oxytocin exerts a potent antinociceptive control after its release in the spinal cord from hypothalamo-hypophysal descending projections (from the brain) … In studies involving human subjects, pain relief was reported in central neurogenic pain and in low back pain after the intracerebroventricular and intrathecal administration of oxytocin (aka pharmaceutical intervention). No previous study has evaluated whether SM has an effect on oxytocin plasmatic concentration. Our results suggest that the increase of the plasmatic concentration of oxytocin following an SM could be partly responsible for the analgesic effect linked to manual therapy techniques due to the activation of descending pain-inhibitory pathways. Orexins are known to be a hypothalamic peptide critical for feeding and normal wakefulness...Orexinergic projections were identified in periaqueductal gray matter, the rostral ventral medulla, the dorsal horn, and the dorsal root ganglion. Emerging evidence shows that the central nervous system administration (intracranial ventricle or intrathecal injection) of orexin A can suppress mechanical allodynia and thermal hypersensitivity in multiple pain models, suggesting the regulation of nociceptive processing via spinal and supraspinal mechanisms. In addition, orexins showed antinociceptive effects on models of pain, such as neuropathic pain, carrageenan test, and postoperative pain… Cortisol is therefore one of the biochemical factors delivered in stress situations that acts to decrease local edema and pain by blocking early stages of inflammation. In addition, it is also believed that high cortisol levels promote wound healing by stimulating gluconeogenesis. The response to stress is triggered by the stimulation of the hypothalamus-pituitary-adrenal axis. It has been proven that a subject’s level of stress can be correlated with secreted cortisol levels. (p. 236) 

 

 

The above study explains the neurochemical mechanism through which pain in mediated via the chiropractic spinal adjustment. Many of the pharmacological and nutraceutical interventions also target these systems through a variety of measures, some with significant negative side-effects.  Next, let’s examine what control these neuropeptides have in the human body beyond pain control. This will begin to explain the systemic connection with the chiropractic adjustment.

 

Systemic Effect of the Chiropractic Adjustment by Increasing of the NOC Axis

 

According to St-Gelais, Jomphe and Trudeau (2006), “…we focus our attention on the roles of NT [neurotensin] in the CNS. However, it is important to point out that this peptide is also highly expressed peripherally where it acts as a modulator of the gastrointestinal and cardiovascular systems” (p. 230). These authors discussed the role of antipsychotic drugs in cases of schizophrenia and how it was used to elevate the neurotensin level.  They found it would promote partial recovery while an additional study revealed that unmediated patients displayed a lowering of neurotensin.

 

An increase in neurotensin acts as a psychostimulant. A study conducted over the course of 25 years on individuals with drug abuse issues showed that increasing neurotensin levels decreased effects of psychostimulants such as amphetamines and cocaine. This study on drug addiction, according to St-Gelais et al. (2006), was conducted on animals, but there are many in chiropractic who have reported on a case-by-case basis that integrating chiropractic has helped many with drug abuse issues. Perhaps what this article suggests can help find more answers.

 

 

St-Gelais et al. (2006) also found a strong connection with a decrease in neurotensin in the following:

 

  1. Schizophrenia
  2. Gastrointestinal function
  3. Cardiac function
  4. Parkinson’s disease
  5. Elevated blood pressure
  6. Eating disorders
  7. Cancer of the
    1. Colon
    2. Lungs
    3. Ovaries
    4. Pancreas
    5. Prostate
    6. Bones
    7. Brain
  8. Alzheimer’s
  9. Stroke (ischemic deaths)
  10. Inflammation

 

Although the literature has not yet conclusively shown that any one of the central nervous system conditions are causally involved with the reduction of neurotensin, the literature strongly suggest that it plays a significant role. There is definitely a common denominator in neurotensin levels and these seemingly uncorrelated conditions.

 

Orexins, also known as hypocretins, according to Ebrahim, Howard, Kopelman, Sharief and Williams (2002) have an important role in sleep and (mental) arousal states. They state, “The hypocretins are thought to act primarily as excitatory neurotransmitters…suggesting a role for the hypocretins in various central nervous functions related to noradrenergic innervation, including vigilance, attention, learning, and memory. Their actions on serotonin, histamine, acetylcholine and dopamine neurotransmission is also thought to be excitatory and a facilitatory role on gamma-aminobutyric acid (GABA) and glutamate-mediated neurotransmission is suggested” (p. 227).

 

Ebrahim et al. (2002) continued:

Apart from their primary role in the control of sleep and arousal, the hypocretins have been implicated in multiple functions including feeding and energy regulation, neuroendocrine regulation, gastrointestinal and cardiovascular system control, the regulation of water balance, and the modulation of pain. A role in behaviour is also postulated. The cell bodies responsible for hypocretin synthesis are localized to the tuberal part of the hypothalamus, the so-called feeding centre...[which] has led to the suggestion that the hypocretins are mediators of energy metabolism. The neuroendocrine effects of the hypocretins include a lowering of plasma prolactin and growth hormone and an increase in the levels of corticotropin and cortisol, insulin and luteinizing hormone. Central administration of the hypocretins increases water consumption, stimulates gastric acid secretion and increases gut motility. The hypocretins increase mean arterial blood pressure and heart rate. The localization of long descending axonal projections containing hypocretin at all levels of the spinal cord suggests a role in the modulation of sensation and pain. Strong innervation of the caudal region of the sacral cord suggests a role in the regulation of both sympathetic and parasympathetic functions. (p. 227-228)

 

According to Lee, Macbeth, Pagani and Young (2009), oxytocin is a product of the hypothalamus and pituitary and according to Plaza-Manzano et al. (2014) it has been linked to the endogenous synthesis of opioids, thereby adding further explanation to the antinociceptive effects in the reduction of pain centrally. This partially explains the pain mechanism of the chiropractic adjustment.

 

 

For non-pain actions of oxytocin, beyond the actions of uterine contractions and lactation (You remember that board question, right?), Lee et al. (2009) reported that oxytocin is integral in:

 

  1. Social memory
  2. Social bonding
  3. Parental behavior
  4. Human behavior
  5. Sexual behavior
  6. Social behaviors (i.e. aggression)
  7. Learning
  8. Memory (overall)
  9. Anxiety
  10. Eating behavior
  11. Sugar metabolism

 

Willenberg et al. (2000) reported, “Corticotropin-releasing hormone (CRH) and its receptors are widely expressed in the brain and peripheral tissues. This hormone is the principal regulator of the hypothalamic-pituitary-adrenal (HPA) axis and exerts its effects via two main receptor subtypes, type 1 (CRH-R1) and 2 (CRH-R2). CRH also activates both the adrenomedullary and systemic sympathetic system limbs and an intraadrenal CRH/ACTH/cortisol system…” (p. 137).

 

According to Smith and Vale (2006) “The principal effectors of the stress response are localized in the paraventricular nucleus (PVN) of the hypothalamus, the anterior lobe of the pituitary gland, and the adrenal gland. This collection of structures is commonly referred to as the hypothalamic-pituitary-adrenal (HPA) axis...In addition to the HPA axis, several other structures play important roles in the regulation of adaptive responses to stress. These include brain stem noradrenergic neurons, sympathetic adrenomedullary circuits, and parasympathetic systems” (pgs. 383-384) 

 

 

Smith and Vale (2006) also reported the following function of the HPA axis that has a direct control by corticotropin-releasing hormones:

  1. Autonomic nervous system function
  2. Learning
  3. Memory
  4. Feeding
  5. Reproduction related behaviors
  6. Metabolic changes
  7. Cardiovascular regulation
  8. Immune system

In addition, Willenberg et al. (2000) added the following”

  1. Mental disorders
  2. Depression
  3. Schizophrenia

 

Conclusion

 

For over a century, chiropractic patients have been reporting the “miracles” of the results rendered in chiropractic offices worldwide and yet chiropractors have been persecuted and often vilified by the medical profession due to the lack of scientific evidence. Although this is a very broad perspective of the potential of the chiropractic care, it is now virtually impossible to ignore the fact that the chiropractic adjustment affects changes in neuropeptides in blood sample post-adjustment. These blood markers verify that changes are made in the human body and these changes have far reaching effects on both wellness and disease care. Medicine has been attempting to reproduce these effects via pharmaceutical intervention and a part of the solution now has to be chiropractic care based upon the evidence reported. 

This is just the beginning, as more evidence is needed to verify the full effects of the chiropractic spinal adjustment. We have a lot of work to do, but the scientific foundation of what chiropractors have observed since our beginning is getting stronger every month as more research is published.  

We would like to leave you with a last and seemingly unrelated statement.  We felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

References:

1. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons.Journal of Manipulative and Physiological Therapeutics, 37(5), 277-286.

2. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain.Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627.

3. Burbach, J. P. (2011). What are neuropeptides? In J. Walker (Ed.),Methods in molecular biology (pp. 1-36). Clifton, New Jersey: Humana Press.

4. Plaza-Manzano, G., Molina-Ortega, F., Lomas-Vega, R., Martinez-Amat, A., Achalandabaso, A., & Hita-Contreras, F. (2014). Changes in biochemical markers of pain perception and stress response after spinal manipulation.Journal of Orthopedic and Sports Physical Therapy, 44(4), 231-239.

5. St-Gelais, F., Jomphe C., & Trudeau, L. (2006). The role of neurotensin in central nervous system pathophysiology: What is the evidence?Journal of Psychiatry & Neuroscience,31(4) 229-245.

6. Ebrahim, I. O., Howard, R. S., Kopelman, M. D., Sharief, M. K., & Williams, A. J. (2002). The hypocretin/orexin system.Journal of the Royal Society of Medicine,95(5), 227-230.

7. Lee, H. J., Macbeth, A. H., Pagani, J. H., & Young, W. S. (2009). Oxytocin: The great facilitator of life.Progressive Neurobiology, 88(2), 127-151.

8. Willenberg, H. S., Bornstein, S. R., Hiroi, N., Path, G., Goretzki, P. E., Scherbaum, W. A., & Chorusos, G. (2000). Effects of a novel corticotropin-releasing-hormone receptor type I antagonist on human adrenal function.Molecular Psychiatry, 5(2), 137-141.

9. Smith, S. M., & Vale, W. W. (2006). The role of hypothalamic-pituitary-adrenal axis neuroendocrine response to stress.Dialogue in Clinical Neuroscience, 8(4), 383-395.

10. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University of Bridgeport College of Chiropractic, an Adjunct Professor of Clinical Sciences at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation, spinal biomechanical engineering and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the medical and legal communities (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at DrMark@AcademyofChiropractic.com or at 631-786-4253.

 

 

Dr. Bill Owens is presently in private practice in Buffalo and Rochester NY and generates the majority of his new patient referrals directly from the primary care medical community.  He is an Associate Adjunct Professor at the State University of New York at Buffalo School of Medicine and Biomedical Sciences as well as the University of Bridgeport, College of Chiropractic and an Adjunct Professor of Clinical Sciences at Texas Chiropractic College.  He also works directly with doctors of chiropractic to help them build relationships with medical providers in their community. He can be reached at dr.owens@academyofchiropractic.com or www.mdreferralprogram.com or 716-228-3847  

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Workers Compensation and Chiropractic:

A Solution for Lowering Healthcare Costs for the Acute and Chronic Care Patient

 

by Mark Studin DC, FASBE(c), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Legislators and Regulators Must Stay Current on Healthcare Outcome Research in Order to Continue to Effectively Support the Needs of the People 

 

Interventions for the diagnosis, treatment and management of spinal complaints are at the forefront of the health care debate.  There are a multitude of health professionals that are involved with the care of these patients.  Let’s take a look at the current healthcare system relating to spinal injuries and subsequent costs for intervention and management.  It was reported by Zigler in 2011 that 200,000 spinal fusion surgeries are performed each year, just in the United States alone. An equal number of microdiscectomies are performed as reported by Mayer (2006), which is considered by many to be a conservative number. Let's consider the chiropractic impact of exposing the public to treatment that could avoid needless surgeries, using the 400,000 disc surgeries [spinal fusions + microdiscectomy] as a conservative number, while reducing the revenue lost to both governmental agencies and workers from absenteeism [due to recovery from surgery]. Allen and Garfin (2010) reported that spine-related health care expenditures totalled over $97.5 billion (2011 inflation adjusted), a 65% increase from 1997. With an aging population, this trend, based on the biomechanics of the aged, will continue.

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbert in 2010 that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study.

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

Let's do the math. If we take the 400,000 disc surgeries (adding cervical surgeries to the equation) done each year as discussed in the opening paragraph and apply McMorland et al.'s (2010) findings that 60% of surgical candidates had successful outcomes with chiropractic as an alternative to surgery, 240,000 patients yearly could avoid needless surgery if they sought chiropractic care.

According to Sherman, Cauthen, Schoenberg, Burns, Reaven and Griffith in 2010, the 2010 inflation adjusted amount per case in Medicare dollars is $13,243.82 per patient once you take into consideration the complications, but exclude many other variables such as repeated MRI's, myelograms, and many hospital charges. Allen and Garfin (2010), taking into account total charges, including mean hospital charges for a single level, uncomplicated, minimally invasive surgery, reported the cost to be $70,159 for all payors. They also went on to report that for 2-level disc surgeries the complication rate increased by 25% with significantly more costs.

If you consider 240,000 preventable surgeries at $70,159 per patient, that equates to $16,838,160,000 healthcare dollars that did not have to be spent. MEDSTAT, as reported by Chiropractic Lifecare of America (2009), estimated that the average cost of chiropractic care per patient per case is $3,918 (2011 inflation adjusted dollars.) If you take this amount and apply it to the 240,000 unnecessary surgeries, you have a net savings of $66,241 per patient. The net savings to the Medicare system and private insurers is $15,897,840,000!

Fayssoux, Goldfarb, Vaccaro, James (2010) studied the indirect costs associated with surgery for low back pain reporting the average lost productivity related to absenteeism resulted in lost wages of $2,884 per patient for the first postoperative year. "The findings demonstrate the significant, though not surprising, impact of spinal disability on productivity, and the importance of including measurement of lost productivity and return to work..." (Fayssoux et al., 2010, p. 9). This equals an additional $692,160,000 in wages to Americans per year by taking the necessity of absenteeism out of the equation with no surgeries from which to recover.  Remember, according to McMorland et al 60% of surgical candidates recovered with chiropractic care.  When surgical intervention is no longer necessary, there is no absenteeism from the procedure. 

 

When we actually look at the ‘big picture” facing spine care in the Unites States, we see that it is not only the actual occurrence of the conditions, but what to do about their recurrence over time. There are numerous recent studies that have established chiropractic as cost effective care that is clinically efficient.2,3,4,5,6,7,8,9,10,11,12,13,14  The conclusions of these recent studies are consistent; chiropractic is less expensive and returns people to work faster and with less disability, thereby alleviating the burden on the workers’ compensation system and overall economy. It begs the question, "If chiropractic care and philosophy were utilized more frequently, how many billions of dollars spent on healthcare in the United States could truly be saved?”

The current trend in healthcare implementation and policy has been labeled as “Evidence Based Care” and the goal is to align the healthcare system to interventions shown to be effective in the research.  On the surface this process seems straight forward, after all how hard could it be to review research papers and then make recommendations on care based on the results of those studies?  Utilizing research in the creation of medical care guidelines is an important step, however it requires a system that encourages updates based on the speed of research outcomes.  There is often a stark difference between the speed of research publication and legislative debates and implementation.  A prime example of this imbalance is the ruling by the New York State Workers’ Compensation Board which, on December 1, 2010, enacted new medical treatment guidelines for the neck, middle/lower back, shoulder and knee.  These guidelines were developed by the American Academy of Occupational and Environmental Health after what was, at the time, a comprehensive review of the peer reviewed research literature.  These guidelines were established for acute care intervention only. 

This ruling by the New York State Workers’ Compensation System effectively ceased coverage of chiropractic intervention for injured workers for the treatment of any chronic conditions.  This included injured workers that had been awarded lifetime chronic care, many at a frequency of 2 visits per month.  These injured workers had demonstrated in a court of law that they were not only injured while working, but their conditions were permanent and required intervention in order for them to continue working.  Ultimately these patients are able to fulfill their roles as productive members of society versus due to absenteeism, becoming financial burdens to the State of New York.  The new law has become so restrictive (and perhaps a constitutional issue) that the injured workers are also denied the ability to use other health insurance or pay out of pocket for continued care.  These guidelines failed to take into consideration that many traumatic musculoskeletal injuries have permanent qualities, not unlike systemic disorders such as diabetes and congestive heart failure.  These legislative changes were enacted in December, 2010, new relevant research that could steer the guidelines to be more effective was published 3 ½ months later. Currently there is no system in place to incorporate updated research.  Evidence Based Care is only effective when the most current resources are used.  There is an apparent inequality in a system that addresses the “acute” portion of spine care and not the management of chronic recurrent spinal conditions, even though the research clearly shows effectiveness for both aspects of spine care.  How long will it take for the New York State Workers’ Compensation Board to respond to this new research?

A more effective way to address this inequality is to consider the definition of "health maintenance" as was done in a recent study released by the American Academy of Occupational and Environmental Health in April, 2011, the very organization that denied the implementation of chronic care guidelines reporting the lack of evidence for the chronic management of spine conditions. In their article, Cifuentes, Willetts and Wasiak define health maintenance care as “…a clinical intervention approach thought to prevent recurrent episodes of LBP [lower back pain]. It conceptually refers to the utilization of health care services with the aim of improving health status and preventing recurrences of a previous health condition” (p. 396).  This paper is specific to health maintenance care and working-related lower back pain and was able to effectively single out chiropractic care for definitive study.

The nuance of the paper was specific because the authors stated, “Given that chiropractors are proponents of health maintenance care, we hypothesize that patients with work-related LBP who are treated by chiropractors would have a lower risk of recurrent disability because this specific approach would be used.  Conversely, similar patients treated by other providers would have higher recurrence rates because the general approach did not include maintaining health, which is a key component to prevent recurrence” (Cifuentes et al., 2011,  p. 396). This research is unique and comprehensive in that it tracked injured workers compensation patients in multiple states (the states were chosen because the patients had the ability to select their doctors on their own and were not mandated providers) and it reviewed claims dated between January and December, 2006, including 894 cases out of a pool of 11,420 claims of non-specific low back pain cases.  

Relating to the results, the authors report, “In our study, after controlling for demographics and severity indicators, the likelihood of recurrent disability due to LBP for recipients of services during the health maintenance care period by all other provider groups was consistently worse when compared with recipients of health maintenance care by chiropractors. Care from chiropractors during the disability episode (“curative”), during the health maintenance period (main exposure variable, “preventative”), and the combination of both (curative and preventive) was associated with lower disability recurrence HRs” (Cifuentes et al., 2011,  p. 403). An interesting note is that although this research study is new, the data that it collected and the philosophy that it outlined are nothing new because the chiropractic profession has been the primary provider of these types of services for over 115 years.  When it comes to comparing the “Return on Investment” [ROI] of chiropractic care there is no other profession that has the ability to save billions in health care costs while at the same time actually delivering healthcare to the population.  Research has VALIDATED chiropractic in both the acute and the chronic phases of spine care. 

Chiropractic offers solutions to the federal government, local government, and public and private insurance companies by avoiding unnecessary surgeries. Chiropractic offers solutions to the economy of local, state and federal governments by increasing the tax base and productivity in the marketplace as a result of keeping workers at work and circulating money into local economies with increased paychecks at the end of the year. The research is conclusive and chiropractic has solutions to many of the economic and societal problems in the United States and worldwide.  It is critical that this type of philosophy of care is allowed to thrive resulting in increased production from injured workers and decreased health care expenditures related to recurring spinal conditions. Oversight and recommendations must be compatible with sustainability.  Although all disciplines are qualified to intervene in the “curative’ phase, chiropractors are unique;/  and most qualified to review, comment and drive chronic care and afford the greatest potential for cost containment.    The research demonstrates two very important facts, the first being the approach of chiropractic care to patients with acute, chronic and permanent injuries and the second, how important it is to provide a bridge between clinical published research and legislative decision making.

 

 

Appendix A –

TABLE 1

Samples of research showing the effectiveness and reduced costs of chiropractic care for spinal-related injuries and conditions.

REFERENCE

FINDINGS

Florida Workers Compensation Board2

Study examined 10,652 workers who sustained back-related injuries. Individuals who received chiropractic care as compared with standard medical care had a 51.3% shorter temporary total disability duration 58.8% lower treatment costs and a 20.3% hospitalization rate versus 52.2 in the medical care group.

Utah Workers  Compensation Board Study3

Back-related injuries treated by chiropractors produced a tenfold savings as compared with medical doctors ($68.38 vs. $668.39)

Australian Workers Compensation Study4

Individuals who had work-related mechanical low back pain who received chiropractic care for their back pain returned to work 4 times faster (6.26 days vs. 25.56 days) and their treatment was 4 times less costly ($392 vs. $1,569) than those who received treatments from medical doctors.

North Carolina Workers Compensation Patients5

A retrospective review of 43,650 claims from 1975 to 1994 showed that the average cost of treatment, hospitalization, and compensation payments (for treatment of strain injuries, specific body parts and low back injuries) were much less for patients treated by DCs than they were for patients treated by MDs.

Average treatment cost for a patient seeing a DC = $663

Average treatment cost for a patient seeing an MD = $3,519.

Chiropractic Treatment for Low Back and Neck6

For the treatment of low back and neck pain, receiving chiropractic treatment showed a reduction in the rates of surgery, advanced imaging, inpatient care, and plain-film radiographs.

Costs of Low Back Care7

6,183 patients were studied who first had contact with either a medical or chiropractic provider. Total insurance payments were much less when initial treatment was provided by a chiropractor.

           

Many recent, independent studies confirm that chiropractic can be an extremely effective modality in the treatment of low back pain and by extension, the onset of osteoarthritis, which should be of particular interest to the Workers’ Compensation Board at this time.

  • ·Regarding the link between low back pain and the onset of osteoarthritis, Stupar, Pierre, French, &Hawker
  • ·A 2009 study by Aspegren, Enebo, Miller, White, Akuthota, Hyde, & Cox and a 2005 study by DeVocht, Pickar, & Wilder have independently concluded that chiropractic care is a safe, highly effective treatment choice for low back pain patients and perhaps most importantly, that low back pain cannot be ignored, especially in light of the fact that it can be often be treated in a very cost-effective manner. 9,10 Considering that a 2009 study by Russo, Weir and Elixhauser concluded that osteoarthritis is the #2 cause of hospital stays (only behind coronary artery disease), the potential long term health care costs of low back pain as a precursor to osteoarthritis is staggering. 11
  • The study by Aspegren, Enebo, Miller, White, Akuthota, Hyde, & Cox (2009) also concluded that 81.5% of workers with an acute injury causing low back or neck pain reported immediate post-treatment relief with chiropractic treatment, with that percentage increasing over time. 9
  • The 2005 study by DeVocht, Pickar, & Wilder found through objective electrodiagnostic studies that 87% of the chiropractic patients they studied exhibited decreased muscle spasms. 10
  • In 2009, Painter reported that Consumer Reports conducted an independent survey of 14,000 subscribers who rated hands-on therapy as the #1 treatment of choice for low back pain. The report went on to state that 88% of those who tried a chiropractic adjustment reported positive outcomes and 59% were “completely” or “very” satisfied versus 34% who were highly satisfied when treated by a primary-care physician. 12
  • ·A 2010 study by O'Shaughnessy, Drolet, Roy, & Descarreaux estimated that serious side effects from a chiropractic adjustment were less than 1 out of every 3,700,000 to 1 out of every 1,000,000 with low back adjustments (the incident was so low, they had to use a range). In contrast, one of the most common medically-prescribed and over the counter treatments for low back pain is nonsteroidal anti-inflammatory drugs (NSAIDs).  It was reported by the American College of Gastroenterology in 2010 that 14 million Americans with arthritic conditions take NSAIDS regularly and up to 60% will have gastrointestinal side effects as a result.13
  • ·According to a 2010 Virginia Healthcare and Hospital Association study, the average non-surgical hospital stay for back problems in Virginia in 2009 was $15,059 and $77,107 with surgery. 14 A Virginia study by North, Kidd, Shipley and Taylor (2007) revealed that the cost to use spinal cord stimulation to treat failed back surgery syndrome was $117,901 and unsuccessful attempts at reoperation cost an additional $260,584. 15

 

  • A 2004 study by Legorreta compared more than 1.7 million insured patients seeking treatment for back pain. The outcomes showed when chiropractic care was utilized in comparison to the standard medical approach, the cost of treatment was reduced by 28%, hospitalizations were reduced by 41%, back surgery was reduced by 32%, and the cost of medical imaging, including x-rays and MRI’s, was reduced by 37%. Furthermore, 95% of the patients that received chiropractic care reported in the study that they were satisfied with their treatment. Utilizing chiropractic care as the first treatment option for back pain was estimated to have the potential to reduce US healthcare costs by more than $28 billion annually.16
  • ·A 2008 study by Cook, Cook and Worrell reported that manual therapy in a hospital-based setting significantly reduced hospital charges. 17
  • ·A 2007 study by Sarnat, Winterstein and Cambron reported that there was a 60.2% reduction of in-hospital admissions with a 59% decrease in hospital stays and a 62% reduction in outpatient surgeries and procedures when chiropractic was utilized. Furthermore, there was an 85% reduction in pharmaceutical costs. 18

The only responsible solution is for chiropractic to be included not only in the final equation for treating chronic care patients, but in the creation of the guidelines as occupational specialists have no experience in chiropractic and will attempt to "saddle chiropractic" with protocols of other more expensive, less successful disciplines, as outlined by Cifuentes, Willetts and Wasiak.

References

1. Cifuentes, M., Willetts, J., & Wasiak, R. (2011). Health maintenance care in work-related low back pain and its association with disability recurrence. Journal of Occupational and Environmental Medicine, 53(4), 396-404.

2. Legorreta, A. P. (2004). Comparative analysis of individuals with and without chiropractic coverage. Archives of Internal Medicine, 164, 1985-1992.

3. Jarvis, K. B., Phillips, R. B., Morris, E. K. (1991). Cost per case comparison of back injury claims of chiropractic versus medical management for conditions with identical diagnostic codes. Journal of Occupational Medicine, 33(8), 847-852.

4. Ebrall, P.S. (1992). Mechanical low-back pain: A comparison of medical and chiropractic management within the Victorian work care scheme. Chiropractic Journal of Australia 22, 47-53.

5. Phelan, S. P., Armstrong, R. C., Knox, D. G., Hubka, M. J., & Ainbinder, D. A. (2004). An evaluation of medical and chiropractic provider utilization and costs: Treating injured workers in North Carolina. Journal of Manipulative and Physiological Therapeutics, 21(7), 442-448.

6. Nelson, C. F., Metz, R. D. & LaBrot, T. (2005). Effects of a managed chiropractic benefit on the use of specific diagnostic and therapeutic procedures in the treatment of low back and neck pain.Journal of Manipulative Physiological Therapeutics, 28(8), 564-569.

7. Stano, M. & Smith, M. (1996). Chiropractic and medical costs of low back care. Medical Care, 34(3), 191-204. 

8. Stupar, M., Pierre, C., French, M. R., & Hawker, G. A. (2010). The association between low back pain and osteoarthritis of the hip and knee: A population-based cohort study. Journal of Manipulative and Physiological Therapeutics, 33(5), 349-354.

9. Aspegren, D., Enebo, B. A., Miller, M., White, L., Akuthota, V., Hyde, T. E., & Cox, J. M. (2009). Functional Scores and subjective responses of injured worker with back or neck pain treated with chiropractic care in an integrative program: A retrospective analysis of 100 cases. Journal of Manipulative and Physiological Therapeutics, 32(9), 765-771.

10. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.  Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.

11. Russo, A., Wier, L. M., & Elixhauser, A. (2009, September). Hospital utilization among near-elderly adults, ages 55 to 64 years, 2007. Agency for Healthcare Research and Quality. Retrieved from http://www.hcup-us.ahrq.gov/reports/statbriefs/sb79.jsp

12. Painter, F. M. (2009, April 10). Consumer reports survey shows hands-on therapies were the top-rated treatments. The Chiropractic Rescue Organization. Retrieved from http://www.chiro.org/LINKS/ABSTRACTS/Hands_on_Therapies.shtml

13. O'Shaughnessy, J., Drolet, M., Roy, J-F., & Descarreaux, M. (2010). Chiropractic management of patients’ post-disc arthroplasty: Eight case reports. Chiropractic & Osteopathy, 18(7), Retrieved from http://www.chiroandosteo.com/content/pdf/1746-1340-18-7.pdf

14. Virginia Hospital and Healthcare Association. (2010). MSDRG 552 Medical Back Problems wo MCC. Virginia Hospital and Healthcare Association PricePoint System. Retrieved from http://www.vapricepoint.org/Report_INP.aspx

15. Virginia Hospital and Healthcare Association. (2010). MSDRG 460 Spinal Fusion Exc Cervical w/o MCC. Virginia Hospital and Healthcare Association PricePoint System. Retrieved from http://www.vapricepoint.org/Report_INP.aspx

16. Legorreta, A. P. (2004). Comparative analysis of individuals with and without chiropractic coverage. Archives of Internal Medicine, 164, 1985-1992.

17. Cook, C., Cook, A., & Worrell, T. (2008). Manual therapy provided by physical therapists in a hospital-based setting: A retrospective analysis. Journal of Manipulative and Physiological Therapeutics 31(5), 338-343.

18. Sarnat, R. L., Winterstein, J., Cambron, J. A. (2007). Clinical utilization and cost outcomes from an integrative medicine independent physician association: An additional 3-year update. Journal of Manipulative and Physiological Therapeutics, 30(4), 263-269.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Soft Tissue Injuries

What are they and the Long-Term Impact of Bodily Injury

 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

According to the American Academy of Orthopedic Surgery “The most common soft tissues injured are muscles, tendons, and ligaments. Acute injuries are caused by a sudden trauma, such as a fall, twist, or blow to the body. Examples of an acute injury include sprains, strains, and contusions.”  (http://orthoinfo.aaos.org/topic.cfm?topic=A00111) We must also not forget that there are other soft tissues that can get injured and the true definition of soft tissue, which is anything not bone is soft tissue. This includes the brain, lungs, heart and any other organ in the body. However, in medicine soft tissue injuries are commonly known to be limited to the muscles, ligaments and tendons. 

When we look at the type of structures that muscles, tendons and ligament are composed of, we will realize that they are connective tissue. According to the National Institute of Health “Connective tissue is the material inside your body that supports many of its parts. It is the "cellular glue" that gives your tissues their shape and helps keep them strong. It also helps some of your tissues do their work (http://www.nlm.nih.gov/medlineplus/connectivetissuedisorders.html). Unlike fracture repair where the bone is replaced and usually heals properly if aligned and rested, connective tissue disorders undergo a different type of wound repair that has aberrant tissue replacement as sequella to bodily injury and has subsequent abnormal permanent function.

If we focus on sprains or ligamentous injuries, according to the American Academy of Orthopedic Surgery there are three types of sprains:

Sprains are classified by severity:1

  • Grade 1 sprain (mild): Slight stretching and some damage to the fibers (fibrils) of the ligament.
  • Grade 2 sprain (moderate): Partial tearing of the ligament. There is abnormal looseness (laxity) in the joint when it is moved in certain ways.
  • Grade 3 sprain (severe): Complete tear of the ligament. This causes significant instability and makes the joint nonfunctional.

Regardless of the severity of the sprain, there is tissue damage or bodily injury and the next step is to determine if there is healing or wound repair. According to Woo, Hildebrand, Watanabe, Fenwick, Papageorgiou and Wang (1999) “…as a result the combination of cell therapy with growth factor therapy may offer new avenues to improve the healing of ligament and tendon. Of course, specific recommendations regarding growth factor selection, and timing and method of application cannot be made at this time. Previous attempts at determining optimal doses of growth factors have provided contradictory results. Although growth factor treatment has been shown to improve the properties of healing ligaments and tendons, these properties do not reach the level of the uninjured tissue.” (p. s320)

According to Dozer and Dupree (2005) “No treatment currently exists to restore an injured tendon or ligament to its normal condition.” (pg. 231).

According to Hauser, Dolan, Phillips, Newlin, Moore and Woldin (2013) “injured ligament structure is replaced with tissue that is grossly, histologically, biochemically and biomechanically similar to scar tissue. Fully remodeled scar tissue remains grossly, microscopically and functionally different from normal tissues” (p. 6) “the persisting abnormalities present in the remodeled ligament matrix can have profound implications on joint biomechanics, depending on the functional demands placed on the tissue. Since remodel ligament tissue is morphologically and mechanically inferior to normal ligament tissue, ligament laxity results, causing functional disability of the affected joints and predisposing other soft tissues in and around the joints further damage.” (p.7) “studies of healing ligaments have consistently shown that certain ligaments do not heal independently following rupture, and those that didn’t feel, do so characteristically inferior compositional properties compared with normal tissue. It is not uncommon for more than one ligament undergo injury during a single traumatic event.” (p.8) “osteoarthritis for joint degeneration is one of the most common consequences of ligament laxity. Traditionally, the pathophysiology of osteoarthritis was thought to be due of aging and wear and tear on the joint, but more recent studies have shown that ligaments play a critical role in the development of osteoarthritis. Osteoarthritis begins when one or more of ligaments become unstable or lax, and the bones began to track improperly and put pressure on different areas, resulting in the rubbing the bone on cartilage. This causes breakdown of cartilage and ultimately leads to deterioration, whereby the joint is reduced to bone on bone, a mechanical problem of the joint that leads to abnormality of the joints mechanics. Hypomobility and ligament laxity have become clear risk factors for the prevalence of osteoarthritis.” (p.9)

Looking globally at the research over the last 16 years, in 1999 it was concluded that the most current treatments to repair or heal the injured ligament do not reach the level of the uninjured tissue. In in 2005 it was concluded that no treatment currently exists to restore an injured tendons or ligaments to its normal condition. In addition the current standard of ligament research in 2013 concluded that that ligaments do not feel independently, but damage ligaments are a direct cause of osteoarthritis and biomechanical dysfunction (abnormality of joint mechanics). The latest research has also concluded that ligament damage or sprains is the key element in osteoarthritis and not simply aging or wear and tear on the joint.

As a result it is now clear based upon the scientific evidence that a soft tissue injury is a connective tissue disorder that has permanent negative sequela and is the cause of future arthritis. This is no longer a debatable issue and those in the medical legal forum who are still arguing “transient soft tissue injuries” are simply rendering rhetoric out of ignorance and a possible ulterior motive because the facts clearly delineate the negative sequella based upon decades of multiple scientific conclusions.

The caveat to this argument is that although there is irrefutable bodily injury with clear permanent sequella, does it also cause permanent functional loss in every scenario? Those are two separate issues and as a result of the function of ligaments, which is to connect bones to bones the arbiter for normal vs. abnormal function is ranges of motion of the joint. That can be accomplished by either a two-piece inclinometer for the spine, which according to the American Medical Association Guides to the Evaluation of Permanent Impairment, 5th Edition (p. 400) is the standard (and is still the medical standard as the 6th Edition refers to the 5th for Ranges of motion). The other diagnostic demonstrable evidence to conclude aberrant function is to conclude laxity of ligaments through x-ray digitizing. Both diagnostic tools confirm demonstrably loss of function of the spinal joints.   

References:

  1. Sprains, Strains and Other Soft Tissue Injuries (2015) American Academy of Orthopedic Surgery, Retrieved from: http://orthoinfo.aaos.org/topic.cfm?topic=A00111
  2. Connective Tissue Disorders (2015) National Institute of Health, Retrieved from: http://www.nlm.nih.gov/medlineplus/connectivetissuedisorders.html
  3. Woo S, Hildebrand K., Watanabe N., Fenwick J., Papageorgiou C., Wang J. (1999) Tissue Engineering of Ligament and Tendon Healing, Clinical Orthopedics and Related Research 367S pgs. S312-S323
  4. Tozer S., Duprez D. (2005) Tendon and Ligament: Development, Repair and Disease, Birth Defects Research (part C) 75:226-236
  5. Hauser R., Dolan E., Phillips H., Newlin A., Moore R. and B. Woldin (2013)  Ligament Injury and Healing: A Review of Current Clinical Diagnostics and Therapeutics, The Open Rehabilitation Journal (6) 1-20
  6. Cocchiarella L., Anderson G., (2001) Guides to the Evaluation of Permanent Impairment, 5th Edition, Chicago IL, AMA Press

Note about the author: Dr. Mark Studin teaches at the doctoral level as an Adjunct Assistant Professor of Chiropractic at the University of Bridgeport, College of Chiropractic, and an Adjunct Assistant Professor of Clinical Sciences at Texas Chiropractic College. He also teaches at the graduate medical level as a clinical presenter credentialed by the Accreditation Council for Continuing Medical Education in Joint Sponsorship with the State University of New York at Buffalo, School of Medicine and Biomedical Sciences along with being credentialed nationally for chiropractic post-doctoral education in a broad range of clinical subjects. Dr. Studin’s CV can be accessed by CLICKING HERE

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn

Chiropractic Linked to Increased Immunity

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

 

From the public’s perspective, we all want to be well and not sick. During the winter months we fear the flu and colds and according to American Public Media (2016) we spend over $40 billion dollars annually just to feel better. Whether that number is accurate, underinflated or overinflated, we can all agree that as a society we spend a significant amount of money just to feel better and not to actually be better. The new buzzword over the last decade has been “wellness” and even hospitals are touting to focus on wellness although most MD’s who staff those hospitals have little to no training in wellness vs. disease care.

 

Personally, I welcome those highly trained MD’s who focus on disease care and our society desperately needs every one of them who is helping to successfully treat sick patients. However, medicine has failed at the “wellness game” and we are starting to see “functional medicine” practitioners who use holistic measures such as vitamins, herb, minerals and other natural means and most are not doctors of medicine, but practitioners who understand that wellness does not necessitate the use of pharmaceuticals. The goal of wellness is to increase our immune system to increase our immunity to various viruses and bacterial causing diseases in part of an overall health plan.

 

According to Wikipedia (2016) “In biology,immunity is the balanced state of having adequate biological defenses to fighting infection,disease, or other unwanted biological invasion, while having adequatetoleranceto avoidallergy, andautoimmune diseases. It is the capability of the body to resist harmfulmicroorganismsorvirusesfrom entering it. Immunity involves both specific and nonspecific components. The nonspecific components act either as barriers or as eliminators of wide range of pathogens irrespective of antigenic specificity. Other components of theimmune systemadapt themselves to each new disease encountered and are able to generate pathogen-specific immunity.” (https://en.wikipedia.org/wiki/Immunity_(medical)

 

According to Jeffries (1991) “The relationship between adrenocortical function and immunity is a complex one. In addition to the well-known detrimental effects of large, pharmacologic dosages of glucocorticoids upon the immune process, there is impressive evidence that physiologic amounts of cortisol, the chief glucocorticoid normally produced by the human adrenal cortex, is necessary for the development and maintenance of normal immunity.” Although many scholarly articles explain the connection between cortisol and the immune system, The Adrenal Fatigue Solution (2016) articulates it well “The hormones produced by your adrenal glands, particularly the stress hormone cortisol, play an important role in regulating your immune system. If your cortisol levels go too low or too high, this can lead to regular infections, chronic inflammation, autoimmune diseases or allergies. Maintaining a balanced level of cortisol is an important part of staying healthy." (http://adrenalfatiguesolution.com/immune-system/)


One of cortisol’s many functions is to reduce inflammation. When your body encounters a pathogen, the immune system responds by quickly attacking it. This causes inflammation, which is often a good thing (it means the immune system is working). In those with healthy immune and endocrine systems, cortisol works to moderate the inflammation caused by an immune system response, but it does not completely eliminate it.”

 

Research done at the University of Madrid Medical School in Madrid Spain and the Department of Health Sciences at the University of Jaen Spain, Plaza-Manzano (2014) and fellow researchers found a link between immunity and chiropractic care. They were studying manipulation, or what chiropractors do when we adjust our patients and the cause for eradication of pain. They concluded that certain neuropeptides, or transmitters in the brain increase when our patients get adjusted. The specific neurotransmitter is called cortisol and according to Smith and Vale (2006) “The principal effectors of the stress response are localized in the paraventricular nucleus (PVN) of the hypothalamus, the anterior lobe of the pituitary gland, and the adrenal gland. This collection of structures is commonly referred to as the hypothalamic-pituitary-adrenal (HPA) axis...In addition to the HPA axis, several other structures play important roles in the regulation of adaptive responses to stress. These include brain stem noradrenergic neurons, sympathetic adrenomedullary circuits, and parasympathetic systems” (pgs. 383-384) . Smith and Vale also reported that balanced cortisol is important in the maintenance of the immune system.

 

It was reported that post-chiropractic adjustment (high velocity, low amplitude spinal manipulation: SM), at 2 hours after the intervention, an increase was found only in the cervical SM group when compared with pre-intervention levels… the cervical SM group showed a significant increase in cortisol plasma concentration immediately post-intervention compared with baseline values” (Plaza-Manzano et al. 2014, p. 235). This verifies that chiropractic care has a direct link to the cortisol-immunity connection through the neuro-endocrine reaction.

 

I would like to leave you with a last and seemingly unrelated statement. Our research team felt it is important to add this at the end since many of our critics negatively portray the safety of chiropractic care. This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

 

  1. The Cost of the Common Cold, American Public Media (2016), Retrieved from: http://www.marketplace.org/2011/01/21/life/cost-common-cold
  2. Immunity (2016) Retrieved from: https://en.wikipedia.org/wiki/Immunity_(medical)
  3. Jeffries W., (1991) Cortisol and Immunity, Medical Hypothesis, 34, 198-208
  4. Adrenal Fatigue and Your Immune System (2016). Retrieved from: http://adrenalfatiguesolution.com/immune-system/
  5. Plaza-Manzano, G., Molina-Ortega, F., Lomas-Vega, R., Martinez-Amat, A., Achalandabaso, A., & Hita-Contreras, F. (2014). Changes in biochemical markers of pain perception and stress response after spinal manipulation. Journal of Orthopedic and Sports Physical Therapy, 44(4), 231-239.
  6. Smith, S. M., & Vale, W. W. (2006). The role of hypothalamic-pituitary-adrenal axis neuroendocrine response to stress. Dialogue in Clinical Neuroscience, 8(4), 383-395.
  7. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems


by Anthony P. Calantoni, DC, CCEP, DAAMLP


Title: The Utilization of Long Term Care for Herniated Lumbar Discs with Chiropractic for the Management of Mechanical Spine Pain


Abstract: To explore the utilization of chiropractic treatment consisting of spinal adjusting, axial traction, electrical muscle stimulation, and core stabilization exercise for the management of mechanical spine pain. Diagnostic studies included physical examination, orthopedic and neurological examinations, and lumbar spine MRI.  The patient reports long-term success in reducing pain levels and increasing functionality by having the ability to perform activities of daily living (ADL’s) without frequent flare-ups which he reported of prior to undergoing chiropractic treatment.

Key Words: low back pain, sciatica, chiropractic adjustment, disc bulge, disc herniation, axial  traction, spinal manipulative therapy.

Introduction
On 2/6/2015, a 49 year old male certified nursing assistant, presented for consultation and examination due to a work injury which occurred on 11/12/2001.  The patient stated he sustained a lifting injury that resulted in severe low back pain.  He stated that he was under the care of a pain management interventionist receiving epidural injections in his lumbar spine on an ongoing basis since the injury occurred.  He added that the injections helped him to cope with the elevated pain levels he experienced on a frequent basis. The patient had previously received chiropractic and physical therapy for his injury and reported that the therapies did help him when he was actively treating.  He informed it had been over 3 years since he last treated with chiropractic or physical therapy.

The patient presented to my office on 2/6/2015 with a chief complaint of lumbar pain.  He rated the discomfort as a 7 on a visual analog scale of 10 with 10 being the worst and the pain was noted as being constant (76-100% of the time).  The onset of pain was a result of the work injury described above.  He reported that the pain would aggravate by activities which required excessive or repetitive bending, lifting, and pulling. He stated he experienced flare-up episodes 4-6 times a month depending on the type of activities he was involved with.  The quality of the discomfort was described as aching, gnawing, sharp, shooting, and painful and was noted as being the worst at the end of the day. He stated that when his pain levels were elevated, it would limit his ability of getting a good night sleep.  The patient further noted he was experiencing numbness and tingling in both legs and his right foot.

Prior History:

The patient denied any prior or subsequent low back injuries and/or traumas.

Clinical Findings:

The patient was 5 feet 10 inches and weighed 230 pounds. His sitting blood pressure was 132/86 and his radial pulse was 74 BPM.  The patient’s Review of Systems and Family History were unremarkable.

An evaluation and management exam was performed.  The exam consisted of visual assessment of range of motion, manual muscle tests, deep tendon reflexes, digital and motion palpation, and other neurological and orthopedic tests.  Palpation revealed areas of spasm, hypertonicity, asymmetry, and end point tenderness indicative of subluxation at T12, L2, and L4.  Palpation of the lumbar muscles revealed moderate to severe muscle spasms in the left piriformis, right piriformis, right sacrospinalis, right gluteus maximus, right erector spinae, right quadratus lumborum and right iliacus. He presented with postural deviations that were found using a plumb line assessment showing short right leg (pelvic deficiency), head tilted to the left, high left shoulder and high right hip.  Point tenderness was notably present along the midline of the spine at the L4 and L5 level.

Manual, subjectively rated strength tests were performed on some of the major muscle groups of the lower extremities, based on the AMA Guides to the Evaluation of Permanent Impairment, 4th Ed., 1993/5th ed., 2001. A rating scale of five to zero was used, with five representing normal muscle strength.  A muscle strength loss of the lower extremities indicates a neurological facilitation resulting from dysfunction in the lumbar spine.  Grade 4 muscle weakness was noted on the right extensor hallicus longus.

Dermatomal sensation was decreased at L4 on the right and decreased at L5 on the right.

Reflex testing was completed and was diminished: 0/+2 on the right patella and +1/+2 on the left patella. The following lumbar orthopedic examinations were performed and found to be positive: Ely's on the right, Hibb's on the right, Iliac compression test and Bragard's on the right.

Lumbar Range of Motion tested with Dual Inclinometers:

Range of Motion            Normal         Examination                       % Deficit

Flexion

90

40

 

56

Extension

25

10

 

60

Left Lateral Flexion

40

20

 

50

Right Lateral Flexion

40

15

 

62

Left Rotation

35

25

 

29

Right Rotation

35

20

 

43

Flexion and left lateral bending were painful at end range. The patient’s limitation to bend is corroborated by the persistent spasticity of lack of motion eliciting pain upon exertion in the lumbar spine.

MRI Results:

The MRI images were personally reviewed.  The lumbar MRI performed on 9/29/2014 revealed anterior positioning of the L4 vertebral body with respect to L5 with a right L4-L5 protrusion compromising the right neural foramen. There is a central herniation at the L5-S1 disc.

Fig. 1,  (A), (B), (C) shows in T2 MRI images (A) is Sagittal and (B) is Axial at L4-L5 and (C) is Axial at L5-S1

Fig. 1 (A)  Sagital

 

Fig. 1 (B) T2 Axial at L4-L5

Fig. 1 (C) T2 Axial at L5-S1




After reviewing the history, physical and neurological examination, and MRI’s it was determined that chiropractic treatment was medically indicated and warranted.  Frequency of treatment was determined 1 time a week.

The patient was placed on a treatment plan consisting of high velocity low amplitude chiropractic adjustments, axial traction, electrical muscle stimulation, and core stabilization exercise. The patient responded in favorable fashion to the chiropractic treatment over a 6 month period.  The patient demonstrated subjective and objective improvement and his care plan was reduced to one time every two weeks to manage and modulate pain levels associated with his permanent condition.

On follow-up re-evaluation approximately 9 months after starting supportive treatment the patient showed improvement in range of motion testing. 

Lumbar Range of Motion was tested with Dual Inclinometers:

Range of Motion            Normal         Examination                       % Deficit

Flexion

90

70

 

13

Extension

25

20

 

20

Left Lateral Flexion

40

35

 

12

Right Lateral Flexion

40

30

 

25

Left Rotation

35

30

 

15

Right Rotation

35

25

 

29

The patient also reported a reduction in pain levels rating the low back discomfort as a4 on a scale of 10 with 10 being the worst and the pain was noted as beingintermittent 25 to 50% of the time. Decreased muscle spasm in the lumbar paraspinal muscles was noted as well as better symmetry and tonicity.  The patient reported the ability of getting a better night sleep and waking up in the morning with less rigidity and achiness.  He stated he was able to perform his work duties and activities of daily living with less flare-ups and exacerbations occurring only 1-2 times a month.  The core training exercises we worked on have helped stabilize the patient’s spine and protected it from reinjuring the already injured tissues. 

Conclusion:

Chiropractic care has been shown to be both safe and effective in treating patients with disc herniation and accompanying radicular symptoms1-4. Spinal chiropractic adjustive therapy has been proven to modulate pain6. This patient presented with chronic low back pain sequela to an injury that occurred over 13 years ago.  The patient had prior success in reduction of pain when he was treating with chiropractic in the past then discontinued treatment.  The patient has been treating with pain management intervention since the injury occurred and it has helped him reduce his pain but has done minimal for him from a functional and mechanical standpoint. The history and exam indicated the presence of 2 herniated discs in the lumbar spine. Lumbar MRI’s were ordered prior to being evaluated and the images were viewed to establish an accurate diagnosis, prognosis, and treatment plan. Long term chiropractic treatment has been utilized successfully in this case study to reduce pain levels and restore the patient’s functional capacity of performing activities of daily living and work duties with less flare ups and exacerbations of low back pain.     

Competing Interests:  There are no competing interests in the writing of this case report.

De-Identification: All of the patient’s data has been removed from this case.

  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniation Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. Hahne AJ, Ford JJ, McMeeken JM, "Conservative management of lumbar disc herniation with associated radiculopathy: a systematic review,"Spine35 (11): E488–504 (2010).
  3. Rubinstein SM, van Middelkoop M, et. al, "Spinal manipulative therapy for chronic low-back pain,"Cochrane Database Syst Rev(2): CD008112. doi:10.1002/14651858.CD008112.pub2. PMID 21328304.
  4. Hoiriis, K. T., Pfleger, B., McDuffie, F. C., Cotsonis, G., Elsangak, O., Hinson, R. & Verzosa, G. T. (2004). A randomized clinical trial comparing chiropractic adjustments to muscle relaxants for subacute low back pain. Journal of Manipulative and Physiological Therapeutics, 27(6), 388-398.
  5. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis.  Manuscript in preparation. 
  6. Whedon, J. M., Mackenzie, T.A., Phillips, R.B., & Lurie, J.D. (2014). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69. Spine,  (Epub ahead of print) 1-33.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Sleep Disorder Improvements

 Have Been Linked to Chiropractic Care

A report on the scientific literature 


 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

“A sleep disorder, or somnipathy, is a medical disorder of the sleep patterns of a person or animal. Some sleep disorders are serious enough to interfere with normal physical, mental, social and emotional functioning. Disruptions in sleep can be caused by a variety of issues, from teeth grinding (bruxism) to night terrors. When a person suffers from difficulty falling asleep and/or staying asleep with no obvious cause, it is referred to as insomnia.

 

Sleep disorders are broadly classified into dyssomnias, parasomnias, circadian rhythm sleep disorders involving the timing of sleep, and other disorders including ones caused by medical or psychological conditions and sleeping sickness. Some common sleep disorders include sleep apnea (stops in breathing during sleep), narcolepsy and hypersomnia (excessive sleepiness at inappropriate times), cataplexy (sudden and transient loss of muscle tone while awake), and sleeping sickness (disruption of sleep cycle due to infection). Other disorders include sleepwalking, night terrors and bed wetting. Management of sleep disturbances that are secondary to mental, medical, or substance abuse disorders should focus on the underlying conditions.” (retrieved from: https://en.wikipedia.org/wiki/Sleep_disorder)

 

According to the Centers for Disease Control and Prevention “Sleep is increasingly recognized as important to public health, with sleep insufficiency linked to motor vehicle crashes, industrial disasters, and medical and other occupational errors.Unintentionally falling asleep, nodding off while driving, and having difficulty performing daily tasks because of sleepiness all may contribute to these hazardous outcomes. Persons experiencing sleep insufficiency are also more likely to suffer from chronic diseases such as hypertension, diabetes, depression, and obesity, as well as from cancer, increased mortality, and reduced quality of life and productivity.1 Sleep insufficiency may be caused by broad scale societal factors such as round-the-clock access to technology and work schedules, but sleep disorders such as insomnia or obstructive sleep apnea also play an important role.An estimated 50-70 million US adults have sleep or wakefulness disorder. Notably, snoring is a major indicator of obstructive sleep apnea.

 

According to SleepMed (2015):

 

Insomnia Statistics

1.

20-40% of all adults have insomnia in the course of any year

   
 2.

1 out of 3 people have insomnia at some point in their lives

   
 3.

Over 70 million Americans suffer from disorders of sleep and wakefulness

   
 4.

Of those, 60% have a chronic disorder


Narcolepsy Statistics


 1.

Affects as many as 200,000 Americans

   
 2.

Fewer than 50,000 are diagnosed

   
 3.

8 to 12% have a close relative with the disease

   
 4.

Affects men slightly more than women

   
 5.

20 to 25% of people with narcolepsy have all four symptoms
(excessive daytime sleepiness, sudden loss of muscle function, sleep paralysis, hallucinations)


Children & Sleep Statistics

 1.

Over 2 million children suffer from sleep disorders

   
 2.

Estimated that 30 to 40% of children to not sleep enough

   
 3.

Children require an average of 9 to 10 hours of sleep each night


Women & Sleep Statistics

 1.

Women are twice as likely as men to have difficulty falling and staying asleep

   
 2.

Pregnancy can worsen sleep patterns

   
 3.

Menopause and hormone changes cause changes in sleep


Older Adult Statistics

 1.

Over half of those over the age of 65 experience disturbed sleep

   
 2.

Those over 65 make up about 13% of the US population, but consume over 30% of prescription drug and 40% of sleeping pills


General Statistics


 1.

Adults require an average of 8 to 8.5 hours of sleep each night

   
 2.

Sleep problems add an estimated $15.9 billion to national health care costs

   
 3.

84 classifications of sleep disorders exist

 

Research done at the University of Madrid Medical School in Madrid Spain and the Department of Health Sciences at the University of Jaen Spain, Plaza-Manzano (2014) and fellow researchers found a link between sleep disorders and chiropractic care. They were studying manipulation, or what chiropractors do when we adjust our patients and the cause for eradication of pain. They concluded that certain neuropeptides, or transmitters in the brain increase when our patients get adjusted. The specific neurotransmitter is called Orexin and is commonly known in medical terms as hypocretins.

 

 

According to Ebrahim (2002) and fellow researchers “have an important role in sleep and (mental) arousal states. They state, “The hypocretins are thought to act primarily as excitatory neurotransmitters…suggesting a role for the hypocretins in various central nervous functions related to noradrenergic innervation, including vigilance, attention, learning, and memory. Their actions on serotonin, histamine, acetylcholine and dopamine neurotransmission is also thought to be excitatory and a facilitatory role on gamma-aminobutyric acid (GABA) and glutamate-mediated neurotransmission is suggested” (p. 227). If we focus simply on serotonin, that is responsible for mood, appetite and sleep and regarding the latter effects many sleep patterns if imbalanced or depleted.

 

A chiropractic adjustment has proven to increase the orexin or hypocretins in the human body, which has a direct effect on the production of serotonin in the human body. Serotonin has been known for many years and recognized in the scientific literature for playing a role in the modulation of sleep.  Although more research is still needed to quantify the results, this now gives a verified scientific explanation to the results chiropractic patients have been experiencing over the last century.

 

 

As with all of my articles from here forward, I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing.  Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

 

References:

  1. Sleep Disorder (October 2015), Retrieved from: https://en.wikipedia.org/wiki/Sleep_disorder
  2. Insufficient Sleep is a Public Health Problem (September 2015) Retrieved from: http://www.cdc.gov/features/dssleep/
  3. Sleep Statistics, (2016), retrieved from: http://www.sleepmedsite.com/page/sb/sleep_disorders/sleep_statistics
  4. Plaza-Manzano, G., Molina-Ortega, F., Lomas-Vega, R., Martinez-Amat, A., Achalandabaso, A., & Hita-Contreras, F. (2014). Changes in biochemical markers of pain perception and stress response after spinal manipulation. Journal of Orthopedic and Sports Physical Therapy, 44(4), 231-239.
  5. Ebrahim, I. O., Howard, R. S., Kopelman, M. D., Sharief, M. K., & Williams, A. J. (2002). The hypocretin/orexin system. Journal of the Royal Society of Medicine, 95(5), 227-230.
  6. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Chiropractic Spinal Adjustments,

 Changes in Organ Systems

& Treatment of Disease

 

A literature review and report on the positive effects of chiropractic on the autonomic nervous system, heart function and the circulatory system

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William Owens DC, DAAMLP

 

Citation: Studin M., Owens W., (2015) Chiropractic Spinal Adjustments, Changes in Organ Systems and Treatment of Disease, The American Chiropractor, 38(11) 20, 22-25

 

A report on the scientific literature 

The autonomic nervous system is the part of the nervous system that supplies the internal organs, including the blood vessels, stomach, intestine, liver, kidneys, bladder, genitals, lungs, pupils, heart, and sweat, salivary, and digestive glands.

 

The autonomic nervous system has two main divisions:

  • Sympathetic
  • Parasympathetic

After the autonomic nervous system receives information about the body and external environment, it responds by stimulating body processes, usually through the sympathetic division, or inhibiting them, primarily through the parasympathetic division. The autonomic nerve pathway involves two nerve cells. One cell is located in the brain stem or spinal cord and is connected by nerve fibers to the other cell, which is located in a cluster of nerve cells (called an autonomic ganglion). Nerve fibers from these ganglia connect with internal organs. Most of the ganglia for the sympathetic division are located just outside the spinal cord on both sides of it. The ganglia for the parasympathetic division are located near or in the organs they connect with.

 

The autonomic nervous system controls many internal body processes such as the following:

  • Blood pressure
  • Heart and breathing rates
  • Body temperature
  • Digestion
  • Metabolism (thus affecting body weight)
  • The balance of water and electrolytes (such as sodium and calcium)
  • The production of body fluids (saliva, sweat, and tears)
  • Urination
  • Defecation
  • Sexual response

Many organs are controlled primarily by either the sympathetic or the parasympathetic division. Sometimes the two divisions have opposite effects on the same organ. For example, the sympathetic division increases blood pressure, and the parasympathetic division decreases it. Overall, the two divisions work together to ensure that the body responds appropriately to different situations. (Low, 2015, http://www.merckmanuals.com/home/brain-spinal-cord-and-nerve-disorders/autonomic-nervous-system-disorders/overview-of-the-autonomic-nervous-system)

 

As you can see by the above definition, the human body is in large part controlled by autonomic or automatic nerves, the kind that function without your control. The question that has arisen throughout the years in chiropractic is, “Can the chiropractic spinal adjustment have an effect on those nerves and with that, can disease process or pathology be influenced? The question of the chiropractic spinal adjustment positively effecting pain through the brain connection (central nervous system) has already been conclusively established.

 

As reported these authors in 2015, the chiropractic adjustment produces direct and measureable effects on the central nervous system across multiple regions which is responsible for the processing of emotion (cingulate cortex, aka limbic cortex) and the insular cortex, which is also responsible for regulating emotion as well as homeostasis. The motor cortex is involved in the planning and execution of voluntary movements, the amygdala’s primary function is memory and decision making (also part of the limbic system), the somatosensory cortex is involved in processing the sense of touch (remember the homunculus) and, finally, the periaqueductal gray is responsible for descending pain modulation (the brain regulating the processing of painful stimuli).

 

The next question then becomes, “Can the chiropractic adjustment cause the central nervous system to effectuate changes in those systems that regulate our organs through the autonomic nervous system?” When studying the autonomic nervous system, according to Welch and Boone (2008), “Because of the proximity of the upper cervical vertebrae to the brainstem, parasympathetic influences dominate these segmental levels; and therefore, a cervical adjustment could likely result in a parasympathetic response (slowing down of heart beat, lowering of BP, constriction of pupils). In those spinal regions where sympathetic innervation is substantial (upper thoracic and upper lumbar), a chiropractic adjustment could elicit a sympathetic response (stimulation of heart beat, raising of BP, dilation of pupils” (p. 87).

In this study, the findings after a cervical adjustment were linked to an increase in parasympathetic dominance. This was apparent when observing the changes occurring in pre- to post-adjustment HRV [heart rate variability] total power that reflects the balance between LF [low frequency] (ie, sympathetic tone) and HF [high frequency] (e, parasympathetic tone). It was evident that, in each patient, the pre- to post-adjustment decrease in LF/HF [low frequency/high frequency] was due to either a larger increase in parasympathetic activity or a lesser decrease in parasympathetic activity when compared with sympathetic activity. These findings are consistent with other studies that have linked upper cervical chiropractic adjustments to parasympathetic mediated regulatory systems.

Among those individuals receiving thoracic adjustments, the findings indicated that the responses were sympathetic in nature…Heart rate variability data revealed that total power, which is a measure of total autonomic signal, decreased substantially post-adjustment. When considering the balance between parasympathetic/sympathetic activity (LH/HF) [low frequency/ high frequency], it was evident that, in each patient, the pre- to post-adjustment decrease in LH/HF [low frequency/high frequency] was due to either a larger increase in sympathetic activity or a lesser decrease in sympathetic activity when compared with parasympathetic activity. These findings are consistent with other studies that have linked thoracic chiropractic adjustments to sympathetic mediated regulatory systems.” (p. 90-91).

Budgell and Hirano (2001) reported, “…authentic spinal manipulation was associated with changes in heart rate and heart-rate variability, which could not be duplicated with sham manipulation. The distinguishing features of the authentic manipulation are the high-velocity, low-amplitude thrust applied to and resulting in cavitation of an intervertebral joint. The authentic manipulative procedure employed in this study has been widely used in clinical trials of the effects of spinal manipulation on headache and biomechanical disorders of the neck” (p. 98).

 

Budgell and Polus reported in The Journal of Manipulative and Physiological Therapeutics (2006) that chiropractic adjustments of the thoracic spine were associated with significant heart rate values and influenced the autonomic output of the heart, meaning that the heart rate generally lowers with the chiropractic adjustment because of the shift in the neurological communication of the autonomic nervous system (to the parasympathetic nerves) causing the heart to slow or normalize. This study by Budgell and Polus offers potential answers to many as to why patients' heart rates spike for no apparent reason. The spine, although a great influence to the nervous system, has often been overlooked in the clinical arena as the prime cause for cardiac issues. The authors of this article want to emphasize that chiropractic care has a positive effect for many conditions, including cardiac, and should be consideredin conjunction with necessary treatment from all other health care specialists, as clinically indicated, in order to make a conclusive diagnosis to rule out life-threatening illnesses.

 

Ward, Coats, Tyer, Weigand, and Williams (2013), found that in an upper thoracic manipulation (mobilization) of the thoracic spine, “There was no statistically significant or clinically relevant difference found between groups for any of the cardiovascular measurements at any time point” (p. 107). This study would appear to overturn the previous findings of autonomic change as a sequella to a chiropractic adjustment. However, if you look carefully at the study limitations, you will realize that this study strongly suggests that chiropractic has perhaps the “only solution” to effect autonomic changes. 

 

Ward et al. (2013) included the following points under the heading “Study Limitations.” “The population that we sampled was composed of chiropractic students who regularly receive spinal manipulation. It is possible that the general public who do not receive regular chiropractic manipulation may react differently than individuals who receive spinal manipulation more frequently. In our design, we did not attempt to exclusively manipulate fixated segments of the upper thoracic spine. It may be argued that, if a patient had a painful fixated spinal segment that was manipulated, the results of this study may have been different…Last, our study participants were young and relatively normotensive” (p. 108-109).

 

The limitations also suggest that the treatment rendered was a joint mobilization, similar to what physical therapy is designed to do and not a chiropractic spinal adjustment. There were no fixations, and a as result, no negative neurological sequelae. In addition, this study was performed on young, healthy chiropractic students who have been getting chiropractic adjustments on a regular basis, probably removing any aberrant neurological issues prior to this study. It is highly unlikely there were significant biomechanical alterations in this study population again, due to age and frequency of chiropractic care. 

 

 

 

Additionally, the lead author of this article, over the course of 5 years in private practice, did pre- and post-extremity Doppler studies on a “sick” population that was not receiving any chiropractic care and observed the same results as Welch and Boone stated above. In addition, Ward et al. (2013) appear to have validated why a chiropractic adjustment on a historical “chiropractic subluxated” region must be “adjusted chiropractically” to have the benefit of autonomic changes. It is the chiropractic “diagnosis” of the functional spinal biomechanical abnormality that is the expertise of the doctor of chiropractic, not simply the act of the therapeutic adjustment to treat neuromuscular negatively affected regions and not simply mobilize segments. 

 

Chronic pain patients were studied by Kang, Chen, Chen and Jaw (2012). Their focus was on the following: sleep disorders, pain scales, pressure pain thresholds, disability indexes and heart rate variability analysis. Although these authors have touched on many areas that have been reported to have a positive influence by chiropractic care, for the purpose of this review we are focusing on heart rate variability. Kang et al. (2012) reported, “Heart rate variability (HRV) analysis, initially developed to evaluate the prognosis of cardiac diseases, has been utilized to assess autonomic functions in chronic pain conditions…The autonomic nervous system plays an important role in the pathogenesis of chronic muscle pain. The autonomic dysfunction in fibromyalgia is characterized by persistent autonomic hyperactivity at rest and hypo-reactivity during stress. In addition, HRV analysis in patients with chronic low back pain has shown that a greater level of disability is associated with a lower HRV” (p. 797). They continued, “Our results are similar to a previous study demonstrating that in participants with chronic low back pain, decreased HRV is significantly associated with a higher index of perceived disability but not with pain intensity itself…It has long been postulated that autonomic regulatory dysfunction is involved in the pathogenesis of several chronic pain conditions” (Kang et al., 2012, p. 801). They concluded, “…reduced HRV was associated with subjective disability in patients with chronic neck pain” (Kang et al., 2012, p. 802).

 

Kang et al. (2012) stated, “The pathologic mechanism of chronic neck pain is still not understood and is a multifactorial disease… Chronic neck pain is difficult to treat. Treatment options must include multimodal, interventions combining physical agents, oral medications, local injections, and adequate exercise” (p. 800). This prevailing message perpetuates previous reports in the literature and further solidifies that allopathy has no solutions for mechanical cervical spine chronic pain. Apkarian ET. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) Apkarian, Hashmi, and Baliki (2011) reported “Clinically, the most relevant conditions in which human brain imaging can have a substantial impact are chronic conditions, as they remain most poorly understood and minimally treatable by existing [medical] therapies” (p. S53).” In essence, what these authors are stating is that although many people suffer from chronic spine pain, very few of them are actually diagnosed with a “medical condition,” aka an “anatomical” lesion.  The chiropractic profession has long professed the lesion is actually functional and based on aberrant spinal biomechanics (subluxation) or mechanical spine pain (no fracture, tumor or infection). That, in fact, is what places chiropractic in the unique role in the diagnosis and management of biomechanical spine pain.  When we lead with “chiropractic spinal assessment,” we have no competition in medicine or rehabilitation.

 

 

Peterson, Bolton, and Humphreys (2012) “…investigate[d] outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment” (p. 525). In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes” (Peterson et al., 2012, p. 526). “Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (Peterson et al., 2012, p. 525). “At 3 months…69% of patients with chronic pain stated that they were either much better or better” (Peterson et al., 2012, p. 538). This is unlikely to be due to the natural history of low back pain because these patients have already passed the period when natural history occurs.

 

 

A study by Tamcan et al. (2010) was the only population-based study of the so called “natural history” of lower back pain and the authors found the “natural history” of chronic lower back pain was not ending in resolution of symptoms, but instead they documented patients moving “in and out” of a level of pain they could tolerate.   Based on the only population-based study of chronic lower back pain, the idea that the natural history of lower back pain ends with a resolution of symptoms is completely false and something that is merely perpetuated by our present healthcare system.

Lawrence et al. (2008) reported, “Existing research evidence regarding the usefulness of spinal adjusting… indicates the following…1. As much or more evidence exists for the use of SMT [spinal manipulation] to reduce symptoms and improve function in patients with chronic LBP as for use in acute and subacute LBP” (p. 670). “…the manual therapy group showed significantly greater improvements than did the exercise group for all outcomes. Results were consistent for both the short-term and the long-term” (Lawrence et al., 2008, p. 663). We see in this study, as in others, that biomechanical alterations in the human spine, aka spinal subluxation, must be diagnosed and treated. They cannot simply be exercised or mobilized away.  This is the unique domain of the doctor of chiropractic. 

 

Dunn, Green, Formolo, and Chicoine  (2011) reported, “The clinical outcomes achieved for this sample should be considered within the context of this veteran patient base, which is typically represented by older, white males with multiple comorbidities. A high percentage of overall service-connected disability was noted, with only a small percentage associated with the low back region. Considerable psychological comorbidity was found, with a high prevalence of PTSD [post-traumatic stress disorder] and depression diagnoses. PTSD and chronic pain tend to co-occur and may interact in a way that can negatively affect either disorder. A previous retrospective study of chiropractic management for neck and back pain demonstrated less improvement among those with PTSD. These points are significant because severe comorbidities and psychosocial factors lessen the likelihood of obtaining positive outcomes with conservative measures, including SMT [chiropractic adjustments], for chronic LBP [low back pain]. Mean percentages of clinical improvement exceeded the MCID [minimum clinically important difference], despite the levels of service-connected disability and comorbidity among this sample of veteran patients” (pg. 930). They went on to conclude that in spite of significant comorbidities that historically compromise positive results, 60.2% of patients met or exceeded the minimum clinically important difference for improvement.

 

The above studies verify that allopathy cannot conclude an accurate diagnosis for chronic back or neck pain while chiropractic reportedly helps resolve these issues 69% of the time as reported in the literature. The authors of this paper have currently practiced for a combined 52 years and can confirm, based upon our observations in the private practice setting, that the percentage is closer to 95% for resolving mechanical spine pain. Although this is an observation and could appear unusually high, that is an accurate accounting of both our experience and that of many other practicing chiropractors who we have informally polled. 

 

Therefore, the above studies, excluding Ward et al. (2013), strongly, suggest that the autonomic nervous system has a direct cause and effect relationship with the chiropractic spinal adjustment and verifies another central nervous system connection. They also verify that chiropractic has demonstrated solutions in today’s healthcare system that can help prevent autonomic aberrant effects of chronic pain on heart rate variability and other related disabilities where allopathy has failed.  

 

When we consider disease care, it is critical to consider the autonomic connection and the effect of chiropractic care as that is part of the equation for scientifically validating many observational conclusions that doctors of chiropractic have realized in their offices over the last century. In addition, this and other central nervous system connection show promising results as the foundation for determining how organs and disease react to the chiropractic spinal adjustment. Although the literature does confirm this hypothesis, it is based on millions getting well observationally and science simply needed time to catch up. Although we now are beginning to realize many answers there is still quite a way to go in our understanding… but we are just that much closer with understating more of the adjustment-central nervous system-autonomic nervous system-disease connection.

 

 

References:

1. Low, P. (2015). Overview of the autonomic nervous system. Merck Manual Consumer Version, Retrieved from http://www.merckmanuals.com/home/brain-spinal-cord-and-nerve-disorders/autonomic-nervous-system-disorders/overview-of-the-autonomic-nervous-system

2. Studin, M., & Owens W. (2015). Research proves chiropractic adjustments effect emotions, learning, memory, consciousness, motivation, homeostasis, perception, motor control, self-awareness, cognitive function, voluntary movement, decision making, touch and pain: BRAIN CONNECTION. US Chiropractic Directory. Retrieved from http://uschirodirectory.com/research/item/744-research-proves-chiropractic-adjustments-effect-emotions,-learning,-memory,-consciousness,-motivation,-homeostasis,-perception,-motor-control,-self-awareness,-cognitive-function,-voluntary-movement,-decision-making,-touch-and-pain.html

3. Welch, A., & Boone, R. (2008). Sympathetic and parasympathetic responses to specific diversified adjustments to chiropractic vertebral subluxations of the cervical and thoracic spine. Journal of Chiropractic Medicine, 7(3), 86-93.

4. Budgell, B., & Hirano, F. (2001). Innocuous mechanical stimulation of the neck and alteration in heart-rate variability in healthy young adults. Autonomic Neuroscience: Basic and Clinical 91(1-2), 96-99.

5. Budgell, B., & Polus, B. (2006). The effects of thoracic manipulation on heart rate variability: A controlled crossover trial.Journal of Manipulative and Physiological Therapeutics, 29(8), 603-610.

6. Ward, J., Coats J., Tyer, K., Weigand, S., Williams, G. (2013). Immediate effects of anterior upper thoracic spine manipulation on cardiovascular response. Journal of Manipulative and Physiological Therapeutics, 36(2), 101-110.

7 Kang, J. H., Chen, H. S., Chen, S. C., & Jaw, F. S. (2012). Disability in patients with chronic neck pain, Heart rate variability analysis and cluster analysis. Clinical Journal of Pain, 28(9), 797-803.

8. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415

Apkarian, A. V., Hashmi, J. A., & Baliki, M. N. (2011). Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain, 152(Suppl. 3), S49-S64.

9. Peterson, C. K., Bolton, J., & Humphreys, B. K. (2012). Predictors of improvement in patients with acute and chronic low back pain undergoing chiropractic treatment. Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533.

10. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain, 150(3), 451-457.

11. Lawrence, D. J., Meeker, W., Branson, R., Bronford, G., Cates, J. R., Haas, M., Hawk, C. (2008). Chiropractic management of low back pain and low back-related leg complaints: A literature synthesis. Journal of Manipulative and Physiological Therapeutics, 31(9), 659-674.

12.  Dunn, A. S., Green, B. N., Formolo, L. R., & Chicoine, D. (2011). Retrospective case series of clinical outcomes associated with chiropractic management for veterans with low back pain. Journal of Rehabilitation Research & Development, 48(8), 927-934.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Chiropractic vs. Medicine:

Who is More Cost Effective

& Renders Better Outcomes for Spine?

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

When we consider mechanical spine issues, we need to consider problems exclusive of fracture, tumor or infection. According to Houweling Et. Al. (2015) back pain effects 43% of the population over the course of a year. In addition, 33% of that group reported that their symptoms led to reduced productivity at work. In Switzerland, this accounted for 3% of their gross domestic products and equates to $14 Billion in US dollars. Chiropractic’s forte` and focus historically has been mechanical spine issues and when considering who the first provider that should be consulted, one needs to examine the scientific evidence based upon outcomes so that rhetoric has no place in utilization and the facts control the argument and direction of the patient.

Simply put, where should a patient go first because it has been proven conclusively that it is the best place to get better. From an insurance carrier and legislative perspective, the question goes one step further and examines the cost of care and which is the best solution in a cost-effective care-path realizing that often the government is the insurer or risk taker and even private carriers have a fiduciary responsibility to their stockholders to ensure a profitable return, while offering the best possible solutions for their insureds.  

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

Houweling Et. Al (2015) concluded “Patients who initially consulted with MDs were significantly less likely to be satisfied with the care received and the results of care compared with those who initially consulted DCs” (p. 480) and Adjusted mean costs per patient were significantly lower in patients initiating care with DCs compared with those initiating care with MDs. (p.480) “The findings of this study pertaining to patient satisfaction were in line with previous research comparing chiropractic care to medical care for back pain, which found that chiropractic patients are typically more satisfied with the services received than medical patients.” (p.481)

Houweling Et. Al (2015) continued “Mean total spinal, hip, and shoulder pain-related health care costs per patient during the 4-month study period were approximately 40% lower in patients initially consulting DCs compared with those initially consulting MDs. The reason for this difference was a lower use of health care services other than first-contact care in patients initially consulting DCs compared with those initially consulting MDs. Previous observational studies comparing medical and chiropractic care in terms of health care costs per patient have shown opposing results. Two studies conducted in the United States found that patients with low back pain treated in chiropractic clinics incurred higher costs than patients treated in medical clinics. One possible reason for these opposing findings is that differences were brought about by the methods of determining costs. In the studies conducted in the United States, costs were determined by chart audit, whereas in the present study, cost determinations were based on an insurance database review of all health care services used for the conditions investigated including the cost of visits to other health care providers.” Pg. 481

Perhaps the most telling point of Houweling Et. Al (2015) results were “Restrictive models of care in which patients are required to contact a medical provider before consulting a chiropractic provider may be counterproductive for patients experiencing the musculoskeletal conditions investigated and possibly others. In addition to potentially reducing health care costs, direct access to chiropractic care may ease the workload on MDs, particularly in areas with poor medical coverage and hence enabling them to focus on complex cases. The minority of patients with complex health problems initially consulting a chiropractic provider would be referred to, or co-managed with, a medical provider to provide optimal care. (p.481)

The above model not only suggests, but verifies that chiropractic should be the first choice or the primary spine care provider freeing up an already overburdened medical primary care provider’s office where they are not qualified to manage mechanical spine issues as reported above. This also helps resolve some of the issues in more rural regions where there is a shortage of primary care medical providers and positions the public to realize better outcomes and serves the insurers by ensuring lower costs.

References:

  1. Houweling, T, Braga A., Hausheer T., Vogelsang M., Peterson C., Humphreys K. (2015) First-Contact Care with a Medical vs. Chiropractic Provider After Consultation with a Swiss Telemedicine Provider: Comparison of Outcomes, Patient Satisfaction, and Health Care Costs in Spinal, Hip, and Shoulder Pain Patients, Journal of Manipulative and Physiologic Therapeutics, 38(7), 477-483
  2. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  3. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic, Chronic Back Pain and Brain Shrinkage:

 

A better understanding of Alzheimer’s, Dementia, Schizophrenia, Depression and Cognitive Disorders and Chiropractic’s Role

 

A Review of the Mechanisms

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

Frank Zolli DC, EdD

 

 

Reference: Studin M., Owens W., Zolli F., (2015) Chiropractic, Chronic Back Pain and Brain Shrinkage:A better understanding of Alzheimer’s, Dementia, Schizophrenia, Depression and Cognitive Disorders and Chiropractic’s Role, A Literature Review of the Mechanisms, The American Chiropractor, 37(10) 36-38, 4042, 44-45

 

Since its inception in 1895, Chiropractic has been focused on the spine and its role in the total health and function of the human body.  Throughout its history, the profession has moved from a “bone on nerve” model to a “biomechanical/functional” model however as we evolve (through scientific findings) in our understanding of the true nature of the chiropractic principles, we now conclusively know that chiropractic results are based on the central nervous system and the detrimental role of spinal dysfuntion in the maintenance of homeostasis and “dis-ease” in the human body.  This article bridges the gap between the foundational chiropractic principles taught by the Palmers and their predecessors and today’s breakthrough findings and the correlation between unchecked spinal dysfunction AKA chronic spine pain and its effect on the brain. 

 

 

Peterson ET. AL. (2012) reported, “The … prevalence of low back pain is stated to be between 15% and 30%, the 1-year period prevalence between 15% and 45%, and a life-time prevalence of 50% to 80%” (pg. 525). While acute pain is a normal short-lived unpleasant sensation triggered in the nervous system to alert you to possible injury with a reflexive desire to avoid additional injury, chronic pain is different. Chronic pain persists and fundamentally changes the patient’s interaction with their environment. In chronic pain it is well documented that aberrant signals keep firing in the nervous system for weeks, months, even years.1 Baliki Et. AL. (2008) stated “Pain is considered chronic when it lasts longer than 6 months after the healing of the original injury. Chronic pain patients suffer from more than pain, they experience depression, anxiety, sleep disturbances and decision making abnormalities that also significantly diminish their quality of life” (pg. 1398). Chronic pain patients also have shown to have changes in brain function in sufferers with Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder giving further insight into disease states. In addition, chronic pain has a cause and effect on the morphology of the spinal cord and the brain in particular resulting in a process termed “linear shrinkage”, which has been suggested to cause ancillary negative neurological sequella.  

 

Apkarian Et. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) Apkarian Et. AL. (2011) reported “Clinically, the most relevant conditions in which human brain imaging can have a substantial impact are chronic conditions, as they remain most poorly understood and minimally treatable by existing (author’s note: medical) therapies” (pg. S53). So in essence what these authors are stating is although many people suffer from chronic spine pain, very few of them are actually diagnosed with a “medical condition” AKA an “anatomical” lesion.  The chiropractic profession has long professed the lesion is actually functional and based on aberrant spinal biomechanics [Subluxation]. 

 

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal care paths with resultant negative sequella of chronic back pain.  Alkarian’s conclusion was querying allopathic doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi ET. Al. (2005) reported regarding medical providers, “(92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (pg. 167).

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

 

Now that we have a general idea of why current musculoskeletal and spine care paths are failing, let’s examine what the negative effects are with a focus on what happens to the central nervous system when a patient is suffering from chronic pain.  The following paragraphs describe what happens to the brain as a result of chronic pain and then offers solutions based upon evidenced based studies.

 

Chronic Pain Affecting Brain Activity at Rest

 

Baliki ET. Al (2008) reported “Recent studies have demonstrated that chronic pain harms cortical areas unrelated to pain, long-term pain alters the functional connectivity of cortical regions known to be active at rest, i.e., the components of the “default mode network” (DMN). This DMN is marked by balanced positive and negative correlations between activity in component brain regions. In several disorders, however this balance is disrupted. Studying with fMRI [functional MRI] a group of chronic back pain patients and healthy controls while executing a simple visual attention task, we discovered that chronic back pain patients, despite performing the task equally well as controls, displayed reduced deactivation in several key default mode network regions. These findings demonstrate that chronic pain has a widespread impact on overall brain function, and suggest that disruptions of the default mode network may underlie the cognitive and behavioral impairments accompanying chronic pain.” (pg. 1398)

 

“The existence of a resting state in which the brain remained active in an organized manner, is called the ‘default mode of brain function. The regions exhibiting a decrease in activity during task performance are the component members of the “default-mode network” (DMN), which in concerted action maintain the brain resting state. Recent studies have already demonstrated that the brain default mode network is disrupted in autism, Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder, suggesting that the study of brain resting activity can be useful to understand disease states as well as potentially provide diagnostic information.”  (pg. 1398)  This is important since for the first time we are starting to see a published correlation between spinal function, chronic pain and central nervous system changes.  This is what our founders have observed yet were unable to prove.

 

“Thus, the alterations in the patient’s brain at ‘rest’ can result in a different default mode network organization. In turn, potential changes in the default-mode network activity could be related to symptoms (other than pain) commonly exhibited by chronic pain patients, including depression and anxiety, sleep disturbances, and decision-making abnormalities, which also significantly diminish their quality of life… chronic pain patients display a dramatic alteration in several key default-mode network regions, suggesting that chronic pain has a widespread impact on overall brain function” (pg. 1398).  This information is pointing to the fact that a doctor of chiropractic should be involved in the triage and treatment of these patients and part of a long term spinal care program. 

 

Baliki ET. Al (2008) continued “Consistent with extensive earlier work examining visuospatial attention tasks, dominant activations were located in posterior parietal and lateral prefrontal cortices, whereas deactivations occurred mainly within Pre-Frontal Cortex and Posterior Cingulate/Cuneate Cortexes. Although activations in chronic back pain patients’ and controls’ brains were similar, chronic back pain patients exhibited significantly less deactivations than healthy subjects in Pre-Frontal Cortex, amygdala, and Posterior Cingulate/Cuneate Cortexes.  The focus was on identifying differences in the way chronic back pain patients’ brains process information not related to pain. This is the first study demonstrating that chronic back pain patients exhibit severe alterations in the functional connectivity between brain regions implicated in the default mode network. It seems that enduring pain for a long time affects brain function in response to even minimally demanding attention tasks completely unrelated to pain. Furthermore, the fact that the observed task performance, compared with healthy subjects, is unaffected, whereas the brain activity is dramatically different, raises the question of how other behaviors are impaired by the altered brain activity” (pg. 1399).

 

“However, the disruption of functional connectivity observed here with increased chronic back pain duration may be related to the earlier observation of brain atrophy increasing with pain duration also in chronic back pain patients. Patient’s exhibit increased pre-frontal cortex activity in relation to spontaneous pain, in addition to dorsolateral prefrontal cortex atrophy. Therefore, the decreased deactivations described here may be related to the dorsolateral pre-frontal cortex /pre-frontal cortex mutual inhibitory interactions perturbed with time. If that is the case, it will support the idea of a plastic, time-dependent, reorganization of the brain as patients continue to suffer from chronic back pain.

 

Mechanistically, the early stages of this cortical reorganization may be driven by peripheral and spinal cord events, such as those that have been documented in animal models of chronic pain, whereas later events may be related to coping strategies necessary for living with unrelenting pain. It is important to recognize that transient but repetitive functional alterations can lead to more permanent changes. Accordingly, long term interference with normal activity may eventually initiate plastic changes that could alter irreversibly the stability and subsequently the conformation of the resting state networks” (pg. 1401).

 

 

Brain Region

Function

Cingulate Cortex

Emotions, learning, motivation, memory

Insular Cortex

Consciousness, homeostasis, perception, motor control, self-awareness, cognitive function

Motor Cortex

Voluntary movements

Amygdala Cortex

Memory, decision making, emotional reactions

Somatosensory Cortex

Proprio and mechano-reception, touch, temperature, pain of the skin, epithelial, skeletal muscle, bones, joints, internal organs and cardiovascular systems

Periaqueductal Gray

Ascending and descending spinothalamtic tracts carrying pain and temperature fibers

 

 

 

 

 

 

 

 

 

 

 

 

THALAMUS

 

 

 

Chronic Pain Causing Brain “Shrinkage”

 

Apkarian ET. Al (2004) reported “Chronic back pain patients were divided into neuropathic, exhibiting pain because of sciatic nerve damage, and non-neuropathic groups. Patients with chronic back pain showed 5-11% less neocortical gray matter volume than control subjects. The magnitude of this decrease is equivalent to the gray matter volume lost in 10-20 years of normal aging. The decreased volume was related to pain duration, indicating a 1.3 cm3loss of gray matter for every year of chronic pain. Gray matter density was reduced in bilateral dorsolateral prefrontal cortex and right thalamus and was strongly related to pain characteristics in a pattern distinct for neuropathic and non-neuropathic chronic back pain. Our results imply that chronic back pain is accompanied by brain atrophy and suggest that the pathophysiology of chronic pain includes thalamocortical processes.

 

It is assumed that the cerebral cortex passively reflects spinal changes and reverts to its normal state after cessation of chronic pain. Our studies show that chronic back pain (sustained for >6 months) is accompanied by abnormal brain chemistry, mainly a reduction in theN-acetyl-aspartate-creatine ratio in the prefrontal cortex, implying neuronal loss or dysfunction in this region and reduced cognitive abilities on a task that implies abnormal prefrontal processing” (pg. 10410).

 

Apkarian ET. Al (2004) continued “At the whole-brain level, this reduction is related to pain duration, regionally depends on multiple pain-related characteristics, and is more severe in the neuropathic subtype. Therefore, these data present strong evidence that the pathophysiology of chronic pain includes cortical processes, and the observed changes likely constitute the physical substrate of the cognitive and behavioral properties of chronic pain” (pg. 10411).

 

“Thus, regional gray matter changes are strongly and specifically related to pain characteristics, and this pattern is opposite for neuropathic compared with non-neuropathic types. This dissociation is consistent with extensive clinical data showing that neuropathic pain conditions are more debilitating and have a stronger negative affect, which may be directly attributable to the larger decrease in gray matter density that we observe in the dorso-lateral pre-frontal cortex (DLPFC) of neuropathic chronic back pain patients.  Moreover, only 18% of whole-brain gray matter variance could be explained by pain duration. Therefore, a large portion of the whole-brain atrophy in chronic back pain cannot be accounted for by the measured pain characteristics, implying that there may be genetic and experiential predispositions contributing to the observed atrophy. In the DLPFC, a larger proportion of the variance could be explained by pain characteristics (40% for neuropathic chronic back pain; 80%for non- neuropathic chronic back pain), implying a tighter relationship between regional brain atrophy and perceived pain. Therefore, we suggest that the pattern of brain atrophy is directly related to the perceptual and behavioral properties of neuropathic chronic back pain.”

 

The observed regional pattern of atrophy is distinct from that seen in chronic depression or anxiety and shows a minimal relationship with anxiety and depression traits. Thus, it seems to be specific to chronic pain, especially because the regions showing atrophy, the thalamus and DLPFC, participate in pain perception. The DLPFC is activated in acute pain, with responses that do not code stimulus intensity. Recent evidence suggests that the DLPFC exerts “top-down” inhibition on orbitofrontal activity, limiting the magnitude of perceived pain. Thus, DLPFC atrophy may lead to a disruption of its control over orbitofrontal activity, which in turn is critical in the perception of negative affect in general and particularly in pain states. Thalamic atrophy in chronic back pain is important, because it is a major source of nociceptive inputs to the cortex and damage to this region may be a reason for the generalized sensory abnormalities commonly associated with chronic pain” (pg. 10413).

 

“The dorsal anterior cingulate is shown to be specifically involved in pain affect in normal subjects and exhibits decreased nociceptive signaling in various chronic pain states, which may again be caused by thalamic atrophy because the anterior thalamus is a primary input to the anterior cingulate. Therefore, we suggest that regional atrophy dictates the brain activity observed in chronic pain, and it may explain the transition from acute to chronic pain by shifting brain activity related to pain affect away from the anterior cingulate to orbitofrontal cortex.”

 

“It is possible that some of the observed decreased gray matter reflects tissue shrinkage [changes in extracellular space and microvascular volume may cause tissue shrinkage without substantially impacting neuronal properties], implying that proper treatment would reverse this portion of the decreased brain gray matter. The atrophy may be also attributable to more irreversible processes, such as neurodegeneration, which we favor because the main brain region involved (the DLPFC) also exhibits decreasedN-acetyl-aspartate, and decreasedN-acetyl-aspartate has been observed in most neurodegenerative conditions. Recent evidence also suggests that after nerve injury, some components of pain behavior are a consequence of hyperactivity of spinal cord microglia, and a histological study has shown a reduction in glial numbers in the cortex in major depressive disorder and bipolar disorder” (pg. 10414).

This article suggests that there is a reversible component in brain atrophy with the resolution of the chronic back pain, with strong evidence that there are some tissue structures that will be permanently damaged should the chronic pain go beyond the defined 6 months.  Clearly there are many different professions that handle the anatomical components of spine pain such as fracture, infection, disc herniation or tumor.  There is only one profession that has the education and training to treat the aberrant spinal biomechanics; chiropractic.  Since chiropractors are trained in treating/managing/triaging the anatomical lesions while also being the best suited to treat the biomechanical component, the evidence verifies that  the first contact for spine pain be a doctor of chiropractic who is also trained in differential diagnosis of underlying pathology. .

 

Brain Regions Effected

 

Apkarian ET. AL (2011) reported “The surprise was that the brain region best reflecting high magnitude of back pain was localized to the medial prefrontal cortex, extending into anterior cingulate cortex, a region not anticipated by acute pain studies. Additionally, brain areas observed for acute pain, like portions of the insula and mid- anterior cingulate cortex were only active transiently and only when the back pain magnitude was on the increase. These results are exciting because, for the first time, we are able to observe brain activity reflecting the subjective perception of the pain that chronic back pain patients come to the clinic to complain. We interpret the transient activity as a nociceptive signal from the periphery, which then is converted into a sustained emotional suffering signal in medial prefrontal cortex (pg. S54).

 

“Thus we can assert that, at least in this group of chronic pain patients, different brain areas encode the perceived magnitude for distinct types of pain. The prevalent expectation for brain activity in chronic pain is a sustained or enhanced activation of the brain areas already identified for acute pain. This view is partly implied by the chronic pain definition and by notions of specificity theory or labeled line theory of pain (where supraspinal organization and representation of pain is assumed to be through fixed and immutable routes). This is exactly what we donotsee. Instead these results imply that functional anatomy or physiology or some combination of both have changed in the brain of chronic back pain patients. It is also important to remember that the close relationships between fundamental properties of back pain and activity in medial prefrontal cortex and insula are correlational, and that both medial prefrontal cortex and insula respond to a long list of cognitive and emotional states (pg. S55). The morphological studies show that the brain structure undergoes changes at multiple spatial and temporal scales, which are for the most part specific to the type of chronic pain studied. That some of these changes are reversible by cessation of chronic pain speaks to the specificity of the processes and also demonstrate that chronic pain may in fact by used as a unique tool with which the dynamics of brain plasticity can be studied at multiple spatial and temporal scales” (pg. S56).

 

Chiropractic as a Solution for Chronic Back Pain

 

 

Peterson ET. AL. (2012) reported “investigate outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment. In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes. Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (pg. 525). “At 3 months, 69% of patients with chronic pain stated that they were either much better or better. This is unlikely to be due to the natural history of LBP because these patients have already passed the period when natural history occurs “(pg. 531).  A study by Tamcan et al (2010) was the only population based study of the so called “natural history” of lower back pain and the authors found the “natural history” of chronic lower back pain was not ending in resolution of symptoms but instead they documented patients moving “in and out” of a level of pain they could tolerate.   Based on the only population-based study of chronic lower back pain, the idea that the “natural history” of lower back pain ends with resolution of symptoms is a complete myth and one that is perpetuated by our present healthcare system.

 

 

Lawrence ET. AL (2008) reported “Existing research evidence regarding the usefulness of spinal adjusting… indicates the following, as much or more evidence exists for the use of SMT [spinal manipulation] to reduce symptoms and improve function in patients with chronic LBP as for use in acute and subacute LBP. The manual therapy group showed significantly greater improvements than did the exercise group for all outcomes. Results were consistent for both the short-term and the long-term” (pg. 670).

 

 

Dunn ET. AL. (2011) reported “The clinical outcomes achieved for this sample should be considered within the context of this veteran patient base, which is typically represented by older, white males with multiple comorbidities. A high percentage of overall service-connected disability was noted, with only a small percentage associated with the low back region. Considerable psychological comorbidity was found, with a high prevalence of PTSD (post-traumatic stress disorder) and depression diagnoses. PTSD and chronic pain tend to co-occur and may interact in a way that can negatively affect either disorder. A previous retrospective study of chiropractic management for neck and back pain demonstrated less improvement among those with PTSD. These points are significant because severe comorbidities and psychosocial factors lessen the likelihood of obtaining positive outcomes with conservative measures, including [chiropractic adjustments], for chronic low back pain. Mean percentages of clinical improvement exceeded the minimum clinically important difference, despite the levels of service-connected disability and comorbidity among this sample of veteran patients” (pg. 930). They went on to conclude that in spite of significant comorbidities that historically compromise positive results, 60.2% of patients met or exceeded the minimum clinically important difference for improvement (pg. 927).

 

Conclusion

 

Chronic pain as defined by that which has last for 6 months or longer which causes significant brain aberration in both morphology (size) and function.  The  literature suggests that this could be the precursor for many diseases as sequella of the human body’s natural reaction to prolonged pain.   Chronic back pain is one of the leading causes of chronic pain and medicine has little to no training or solutions as reported in the literature. Conversely, chiropractic has significant training and has been proven in “blinded” studies to have significant positive outcomes even in significantly adverse condition to help resolve chronic pain. As a result, the negative sequella on the brain of chronic pain, including shrinkage of the brain can be reversed through chiropractic care as the evidence has verified that once the chronic pain has resolved, the brain has the ability to return to its normal size and regain much function.

 

 

Although this evidence is strong, more research is needed and this further sets the foundation for understanding how chiropractic directly effects diseases in the human body. In addition, this also takes the chiropractic profession to the next level of understanding how and why a chiropractic adjustment works.  

 

 

References:

  1. National Institute of Neurological Disorders and Stroke, NINDS Chronic Pain Information Page (July 2015), retrieved from: http://www.ninds.nih.gov/disorders/chronic_pain/chronic_pain.htm
  2. Baliki N., Geha P., Apkarian A., Chialvo D., (2008) Beyond Feeling: Chronic Pain Hurts the Brain, disrupting the Default-Mode Network Dynamics, Journal of Neurosciences 28(6) 1398-1403
  3. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415
  4. Apkarian A., Hashmi J., Baliki M., (2011) Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain, Pain 152, S49-S54
  5. Raissi G., Mansoon K., Madani P., Rayegani S., (2006) Survey of General Practitioners’ attitudes Toward Physical Medicine and Rehabilitation, International Journal of Rehabilitation Research 26: 167-170
  6. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  7. Schmale G. (2005) More Evidence of Educational Inadequacies in Musculoskeletal Medicine 437, 251-259
  8. Peterson C., Bolton J., Humphreys K., (2012) Predictors of Improvement in Patients With Acute and Chronic Low Back Pain Undergoing Chiropractic Treatment, Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533
  9. Lawrence, D., Meeker W., Branson R., Bronford G., Cates J., Haas M., Haneline M., Micozzi M., Updyke W., Mootz R., Triano J., Hawk C., (2008) chiropractic management of low back pain and low back-related leg complaints: a literature synthesis, Journal of Manipulative and Physiological Therapeutics, 31(9) 659-674
  10. Dunn A., Green B., Formolo L., Chicoine D. (2011) Retrospective case series of clinical outcomes associated with chiropractic management for veterans with low back pain, Journal of Rehabilitation Research & Development, 48(8) 927-934
  11. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain, 150(3), 451-457.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

Back Pain: Who Should Be Seen First & WHY

Chiropractor vs. Medical Primary Care Doctor

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Reference: Studin M., Owens W. (2015) Back Pain: Who Should Be Seen First & WHY, Chiropractor vs. Medical Primary Care Doctor, American Chiropractor 37 (9) 50, 52, 54, 56

 

 

 

As Chien and Bajwa(2008)pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

The problems that exist regarding chronic back pain are compounded by an unsuspecting public that historically, initially seeks care from their primary care medical providers who do not have strong grasps on mechanical back pain. According to Apkarian et al. (2004), back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made. In other words, virtually every time a patient goes to see his/her primary care doctor as a result of his/her chronic back pain, the doctor does not know the cause of the problem, yet treats an area that he/she is not equipped to diagnose.  

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal education with resultant negative sequellae of chronic back pain.  The above conclusion was drawn by querying allopathic (medical) doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi, Mansoon, Madani, and Rayegani (2006) reported regarding medical providers. Most respondents (92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (Raissi et al., 2006, p. 167).

 

Day, Yeh, Franko, Ramirez, and Krupat (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine.  Schmale (2005) reported, “…incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 (57/122) have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (p. 251). 

 

With continued evidence of a lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical (subluxation) orientation, the question becomes, “Which profession has the educational basis, training and clinical competence to manage these cases?”  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. It is so important to practice these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be proficient in neuromusculoskeletal evaluation, treatment and management. In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internships.

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral educationas referenced above.

 

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

 

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

 

References:

 

1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411

2. Peterson, C. K., Bolton, J., & Humphreys, B. K. (2012). Predictors of improvement in patients with acute and chronic low back pain undergoing chiropractic treatment. Journal of Manipulative and Physiological Therapeutics, 35(7), 525-533.

3. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences, 28(6) http://www.jneurosci.org/content/28/6/1398.full

 4. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.

5. Raissi, G. R., Mansoon, K., Madani, P., & Rayegani, S. M. (2006). Survey of general practitioners’ attitudes toward physical medicine and rehabilitation. International Journal of Rehabilitation Research, 29(2), 167-170.

6. Day, C. S., Yeh, A. C., Franko, O., Ramirez, M., & Krupat, E. (2007). Musculoskeletal medicine: An assessment of the attitudes of medical students at Harvard Medical School. Academic Medicine, 82(5), 452-457.

7. Schmale, G. A. (2005). More evidence of educational inadequacies in musculoskeletal medicine. Clinical Orthopaedics and Related Research, 437, 251-259.

 8. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.

 9. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

More Research