How Does the Chiropractic Adjustment Work?

A Literature Review of Pain Mechanisms & Brain Function Alteration

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Reference: Studin M., & Owens W., (2015) How Does the Chiropractic Adjustment Work? A Literature Review of Pain Mechanisms and Brain Function Alteration, The American Chiropractor 37(8)  30, 32-34, 36-38, 40, 42-43

 

Were D.D. and B.J. Palmer right with their bone on nerve theory?According to Charles A. Lantz, DC. PhD. Director of Research, Life Chiropractic College West (2015), Montgomery and Nelson cited the context within which medical authors in the mid- to late 19th century referred to subluxation, one that was similar to how D.D. Palmer later would:

 

A vertebra is said to be displaced or luxated when the joint surfaces are entirely separated. Sub-luxation is a partial or incomplete separation: one in which the articulating surfaces remain in partial contact. This latter condition is so often referred to and known by chiropractors as sub-luxation. The relationship existing between bones and nerves are so nicely adjusted that anyone of the 200 bones, more especially those of the vertebral column, cannot be displaced ever so little without impinging upon adjacent nerves. Pressure on nerves excites, agitates, creates an excess of molecular vibration, whose effects, when local, are known as inflammation, when general, as fever. A subluxation does not restrain or liberate vital energy. Vital energy is expressed in functional activity. A subluxation may impinge against nerves, the transmitting channel may increase or decrease the momentum of impulses, not energy. http://www.chiro. org/LINKS/FULL/A_Review_of_the_Evolution.shtml#Citation_7

 

Lance (2015) also reported, "According to BJ Palmer, a subluxation represented a displaced bone that impinged on a nerve, thus interfering with the transmission of vital nerve energy (or, more specifically, the transmission of ‘mental impulses.’)” (http://www.chiro.org/LINKS/FULL/A_Review_of_the_ Evolution. shtml)

 

For over a century, doctors of chiropractic have been explaining chiropractic by teaching patients and the medical community that there are bones compressing/irritating spinal nerves. The ensuing nervous system dysfunctions have negative effects on the function of peripheral nervous systems, central nervous systems and patients’ overall ability to maintain homeostasis. Essentially, they go into states of dis-ease.  These discussions were in large part due to the teachings of D.D. Palmer and B.J. Palmer as previously cited. Based on the results rendered in chiropractic offices across the country and in a patient-driven model of success, the general consensus in both private practice and chiropractic academia had been to maintain status quo and simply teach what has worked in the absence of conclusive evidence, particularly in light of a lack of serious governmental funding and support for chiropractic research.  In addition, dogma has also created blinders for many, as evidence evolves to further chiropractic and its understanding, application and expansion.

 

Over the last 10-15 years, research has been published by the scientific community that has begun to verify that D.D. and B.J. Palmer’s hypotheses were fundamentally correct, while clarifying the specific physiological mechanisms related to chiropractic’s ability to alleviate pain.  As a result of initially studying pain mechanisms, contemporary research has also begun to set the foundation for understanding why chiropractic works with systemic and autonomic dysfunction and potential disease treatment through the adjustment – central nervous system connection. It is the understanding of that connection with pain that is helping people to begin to understand the full impact of the chiropractic spinal adjustment and render the evidence to help more get well.

 

CENTRAL NERVOUS SYSTEM PROCESSING OF PAIN REDUCTION

 

Coronado et al. (2012) reported that, “Reductions in pain sensitivity, or hypoalgesia, following SMT [spinal manipulative therapy or the chiropractic adjustment] may be indicative of a mechanism related to the modulation of afferent input or central nervous system processing of pain” (p. 752). “The authors theorized the observed effect related to modulation of pain primarily at the level of the spinal cord since (1) these changes were seen within lumbar innervated areas and not cervical innervated areas and (2) the findings were specific to a measure of pain sensitivity (temporal summation of pain), and not other measures of pain sensitivity, suggesting an effect related to attenuation of dorsal horn excitability and not a generalized change in pain sensitivity” (Coronado et al., 2012, p. 752). These findings indicate that a chiropractic spinal adjustment affects the dorsal horns at the root levels which are located in the central nervous system.  This is the beginning of the “big picture” since once we identify the mechanism by which we can positively influence the central nervous system, we can then study that process and its effects in much more depth.    

 

One of the main questions asked by Corando et al. (2012) “…was whether SMT (chiropractic adjustments) elicits a general response on pain sensitivity or whether the response is specific to the area where SMT is applied. For example, changes in pain sensitivity over the cervical facets following a cervical spine SMT would indicate a local and specific effect while changes in pain sensitivity in the lumbar facets following a cervical spine SMT would suggest a general effect. We observed a favorable change for increased PPT [pressure pain threshold] when measured at remote anatomical sites and a similar, but non-significant change at local anatomical sites. These findings lend support to a possible general effect of SMT beyond the effect expected at the local region of SMT application (p. 762).

 

The mechanisms of SMT are theorized to result from both spinal cord mediated mechanisms and supraspinal mediated mechanisms [brain]. A recent model of the mechanisms of manual therapy suggests changes in pain related to SMT result from an interaction of neurophysiological responses related to the peripheral nervous system and the central nervous system at the spinal and supraspinal level” (Coronado et al., 2012, p. 762).  This demonstrates that the chiropractic adjustment influences the peripheral nervous system and the central nervous system.  “Collectively, these studies provide evidence that SMT has an immediate effect on reducing pain sensitivity, most notably at the remote region of stimulus assessment with similar results in clinical and healthy populations” (Coronado et al., 2012, p. 763). 

 

  1. ACTIVATION OF BRAIN & DESCENDING NERVE PATHWAYS BEYOND AREAS TREATED
  2. CHIROPRACTIC ADJUSTMENT VS. SPINAL MOBILIZATION

 

Reed, Pickar, Sozio, and Long (2014) reported:

…forms of manual therapy have been clinically shown to increase mechanical pressure pain thresholds (i.e., decrease sensitivity) in both symptomatic and asymptomatic subjects.Cervical spinal manipulation has been shown to result in unilateral as well as bilateral mechanical hypoalgesia. Compared with no manual therapy, oscillatory spinal manual therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1, and L3 in individuals with rheumatoid arthritis. The immediate and widespread hypoalgesia associated with manual therapy treatments has been attributed to alterations in peripheral and/or central pain processing including activation of descending pain inhibitory systems.

Increasing evidence from animal models suggests that manual therapy activates the central nervous system and, in so doing, affects areas well beyond those being treated. (p. 277)

Reed et al. (2014) also reported:

 

The finding that only the higher intensity manipulative stimulus (ie, 85% BW [body weight] vs 55% BW or control) decreased the mechanical sensitivity of lateral thalamic neurons to mechanical trunk stimulation coincides with other reports relating graded mechanical or electrical stimulus intensity to the magnitude of central inhibition…

Several clinical studies indicate that spinal manipulation [chiropractic spinal adjustment] alters central processing of mechanical stimuli evidenced by increased pressure pain thresholds and decreased pain sensitivity in asymptomatic and symptomatic subjects following manipulation. (p. 282)

 

Thalamus. (2015). Wikipedia. Retrieved from http://en.wikipedia.orgwiki/Thalamus

The thalamus has multiple functions. It may be thought of as a kind ofhubof information. It is generally believed to act as a relay between different subcortical areas and thecerebral cortex. In particular, every sensory system (with the exception of theolfactory system) includes a thalamic nucleus that receives sensory signals and sends them to the associated primary cortical area. For the visual system, for example, inputs from theretinaare sent to thelateral geniculate nucleusof the thalamus, which in turn projects to thevisual cortexin theoccipital lobe. The thalamus is believed to both process sensory information as well as relay it—each of the primary sensory relay areas receives strong feedback connections from the cerebral cortex. Similarly themedial geniculate nucleusacts as a keyauditoryrelay between theinferior colliculusof themidbrainand theprimary auditory cortex, and the ventral posterior nucleusis a keysomatosensoryrelay, which sends touch andproprioceptiveinformation to theprimary somatosensory cortex.

 

The thalamus also plays an important role in regulating states ofsleep and wakefulness.Thalamic nuclei have strong reciprocal connections with the cerebral cortex, formingthalamo-cortico-thalamic circuitsthat are believed to be involved withconsciousness. The thalamus plays a major role in regulating arousal, the level of awareness, and activity (“Thalamus,” http://en.wikipedia.org/wiki/Thalamus).

 

This indicates that the chiropractic spinal adjustment reduces pain by effecting the thalamus and descending central pain pathways, while mobilization does not show evidence of having the same effect.  In addition, with our current knowledge of the chiropractic adjustment effecting the thalamus, we can begin to offer an explanation of how the first historically reported chiropractic adjustment by D.D. Palmer helped Harvey Lilard regain his hearing. 

CHIROPRACTIC ADJUSTMENTS REDUCES PAIN IN MULTIPLE REGIONS DUE TO LOCAL AND CNS STIMULATION

 

Mohammadian, Gonsalves, Tsai, Hummel, and Carpenter (2004) investigated “the hypoalgesic effects of a single SMT on acute inflammatory reactions and pain induced by capsaicin [hot pepper extract]. These effects were assessed by measuring both sensory (allodynia [central nervous system pain], hyperalgesia, spontaneous pain intensity) and local vascular parameters (blood flow)” (p. 382). They reported “As expected, topical capsaicin induced primary hyperalgesia in the application area and secondary hyperalgesia outside that area. While the local vascular parameter blood flow was not affected by a single SMT [spinal manual therapy], the results indicated that sensory parameters (spontaneous pain perception and areas of both secondary hyperalgesia and allodynia) were significantly altered after spinal manipulation compared with N-SMT [non-spinal manipulative therapy]. These results clearly demonstrated that in contrast to the N-SMT condition, a single spinal manipulation triggered hypoalgesic effects” (Mohammadian et al., 2004, p. 385).

 

“In the present study, local blood flow was not affected by a single SMT. However, significant changes were observed on sensory parameters, supporting the hypothesis of centrally mediated effects of a single SMT. It is well known that secondary hyperalgesia appears to be due to central sensitization of the spinal dorsal horn neurons,while primary hyperalgesia is caused by nociceptor sensitization. It has also been discussed that mechanisms underlying allodynia are centrally mediated.Our findings also confirm the view that the hypoalgesic effects of a single SMT might be due to central modulation. These effects could also be explained as a result of a stress reaction caused by spinal manipulation treatment…Other studies discussed thatspinal manipulation [chiropractic spinal adjustments] stimulates mechanoreceptors of the spinal joints, resulting in afferent discharges and subsequently causing inhibitory reactions on the dorsal horn neurons.Vicenzino et al. demonstrated also a strong correlation between hypoalgesic and sympathoexcitatory effects, suggesting that a central control mechanism might be activated by manipulative therapy… previous studies as well as the present investigation…indicate that hypoalgesic effects of spinal manipulation are more likely mediated through central modulation” (Mohammadian et al., 2004, p. 386).  This study suggests that the chiropractic spinal adjustment affects the nociceptors and the mechanoreceptors at the joint level causing central modulation of an effect at the cord and/or brain level(s) and pain reductions in multiple areas as a result.

CHIROPRACTIC ADJUSTMENTS CREATE HIGHER FUNCTION IN CORTICAL REGIONS

 

Gay, Robinson, George, Perlstein, and Bishop (2014) reported, “With the evidence supporting efficacy of MT [manual therapy or chiropractic spinal adjustments] to reduce pain intensity and pain sensitivity, it is reasonable to assume that the underlying therapeutic effect of MT is likely to include a higher cortical component” (p. 615).   It is in this place in particular that chiropractic must lead in both clinical application and academic processes such as formal continuing education lectures and research.

 

In the study conducted by Gay et al. (2014), “…pain-free volunteers processed thermal stimuli applied to the hand before and after thoracic spinal manipulation (a form of MT).  What they found was that after thoracic manipulation, several brain regions demonstrated a reduction in peak BOLD [blood-oxygen-level–dependent] activity. Those regions included the cingulate, insular, motor, amygdala and somatosensory cortices, and the PAG [periaqueductal gray regions]” (p. 615). In other words, thoracic adjustments produced direct and measureable effects on the central nervous system across multiple regions, which in the case of the responsible for the processing of emotion (cingulate cortex, aka limbic cortex) are regarding the insular cortex which also responsible for regulating emotion as well has homeostasis. The motor cortex is involved in the planning and execution of voluntary movements, the amygdala’s primary function is memory and decision making (also part of the limbic system), the somatosensory cortex is involved in processing the sense of touch (remember the homunculus) and, finally, the periaqueductal gray is responsible for descending pain modulation (the brain regulating the processing of painful stimuli).

 

Brain Region

Function

Cingulate Cortex

Emotions, learning, motivation, memory

Insular Cortex

Consciousness, homeostasis, perception, motor control, self-awareness, cognitive function

Motor Cortex

Voluntary movements

Amygdala Cortex

Memory, decision making, emotional reactions

Somatosensory Cortex

Proprio and mechano-reception, touch, temperature, pain of the skin, epithelial, skeletal muscle, bones, joints, internal organs and cardiovascular systems

Periaqueductal Gray

Ascending and descending spinothalamtic tracts carrying pain and temperature fibers

 

This is a major step in showing the global effects of the chiropractic adjustment, particularly those that have been observed clinically, but not reproduced in large studies.  “The purpose of this study was to investigate the changes in FC [functional changes] between brain regions that process and modulate the pain experience after MT [manual therapy]. The primary outcome was to measure the immediate change in FC  across brain regions involved in processing and modulating the pain experience and identify if there were reductions in experimentally induced myalgia and changes in local and remote pressure pain sensitivity” (Gay et al., 2014, p. 615).  Simply put, can the processing of pain be modulated or regulated from an external force without the use of pharmacy or surgery? 

 

“Within the brain, the pain experience is subserved by an extended network of brain regions including the thalamus (THA), primary and secondary somatosensory, cingulate, and insular cortices.Collectively, these regions are referred to as the pain processing network (PPN) and encode the sensory discriminate and cognitive and emotional components of the pain experience.Perception of pain is dependent not merely on the neural activity within the PPN [pain processing network] but also on the flexible interactions of this network with other functional systems, including the descending pain modulatory system” (Gay et al., 2014, p. 617).  This is part of the reason why some patients experience pain differently than others.  Some have anxiety, depression and are at a loss to function while others can “ignore” the pain and maintain an adequate functional level as a productive member of society.  Pain is deeply tied to the most primitive regions of the central nervous system and it appears (as chiropractors have observed clinically for 116 years) that therapeutically speaking, we can have an influence on these higher centers with little or no side-effects.   

 

Gay et al. (2014) went on to report, “This study assessed the relationship of brain activity between regions of the PPN [pain processing network] before and after MT [manual therapy or chiropractic spinal adjustments]. Using this approach, we found common and treatment-dependent changes in FC [functional changes]…Our study is unique in our neurophysiologic measure because we used resting-state fMRI [functional MRI] in conjunction with FC [functional change] analyses. Our results are in agreement with studies that have found immediate changes using other neurophysiologic outcomes, such as Hoffman-reflex and motor-neuron excitability, electroencephalography with somatosensory-evoked potentials, transcranial magnetic stimulation with motor evoked potentials, and task-based fMRI with peak BOLD response” (p. 619 and 624).  This study concludes that chiropractic spinal adjustments create functional changes in multiple regions of the brain based upon multiple outcome measures.   In the study by Gay et al. 2014), this was measureable and reproducible. In addition, this has far reaching effects in setting the foundation for understanding how the adjustment works in systemic and possibly autonomic changes by being able to measure and reproduce functional changes within the brain as direct sequellae.

 

  1. MUSCLE IMPAIRMENT CREATES CNS ALTERATIONS & THE NECESSITY FOR BOTH SHORT-TERM & LONG-TERM CHIROPRACTIC CARE
  2. ADJUSTMENTS WORK – SPINAL MOBILIZATION DOES NOT

 

Daligadu, Haavik, Yielder, Baarbe, and Murphy (2013) also reported that “Numerous studies indicate that significant cortical plastic changes are present in various musculoskeletal pain syndromes.In particular, altered feed-forward postural adjustments have been demonstrated in a variety of musculoskeletal conditions including anterior knee pain, low back pain,and idiopathic neck pain.Furthermore, alterations in trunk muscle recruitment patterns have been observed in patients with mechanical low back pain” (p. 527). What this means is that there are observable changes in the function of the central nervous system seen in patients with musculoskeletal conditions.  That is something that chiropractors have observed clinically and shows the medical necessity for chiropractic care for both short and long term management as well as in the prevention of pain syndromes. 

 

Daligadu et al. (2013) stated the following:

 

There is also evidence in the literature to suggest that muscle impairment occurs early in the history of onset of spinal complaints,and that such muscle impairment does not automatically resolve even when pain symptoms improve. This has led some authors to suggest that the deficits in proprioception and motor control, rather than the pain itself, may be the main factors defining the clinical picture and chronicity of various chronic pain conditions.

Furthermore, recent evidence has demonstrated that spinal manipulation can alter neuromuscular and proprioceptive function in patients with neck and back pain as well as in asymptomatic participants. For instance, cervical spine manipulation has been shown to produce greater changes in pressure pain threshold in lateral epicondylalgia than thoracic manipulation; and in asymptomatic patients, lumbar spine manipulation was found to significantly influence corticospinal and spinal reflex excitability. “Interestingly, Soon et al did not find neurophysiological changes following mobilization on motor function and pressure pain threshold in asymptomatic individuals, perhaps suggesting that manipulation [chiropractic spinal adjustments], as distinct from mobilization, induces unique physiological changes. There is also accumulating evidence to suggest that chiropractic manipulation can result in changes to central nervous system function including reflex excitability, cognitive processing, sensory processing, and motor output.There is also evidence in SCNP [sub-clinical neck pain] individuals that chiropractic manipulation alters cortical somatosensory processingand elbow joint position sense.This evidence suggests that chiropractic manipulation may have a positive neuromodulatory effect on the central nervous system, and this may play a role in the effect it has in the treatment of neck pain. It is hoped improving our understanding of the neurophysiological mechanisms that may precede the development of chronic neck pain in individuals with SCNP will help provide a neurophysiological marker of altered sensory processing that could help determine if an individual is showing evidence of disordered sensorimotor integration and thus might benefit from early intervention to prevent the progression of SCNP into more long-term pain states.  (p. 528)

 

The authors went on to state, “Previous work using paired-pulse transcranial magnetic stimulation (TMS) of the motor cortex has indicated that cervical spine manipulation can alter sensorimotor integration of the upper limb by decreasing the amount of short-interval intracortical inhibition (SICI).A recent somatosensory evoked potential (SEP) study involving dual SEPs from the median and ulnar nerves demonstrated that cervical manipulation of dysfunctional areas in patients with a history of reoccurring neck pain or stiffness was able to affect sensorimotor integration…spinal manipulation altered the way the central nervous system responded to the motor training task” (Daligadu et al., 2013, p. 528).

 

Furthermore, the authors added, “…altered afferent input from the neck due to joint dysfunction leads to disordered sensorimotor integration within the cerebellum and a subsequent derangement in motor commands to the upper limb. The cerebellum plays a fundamental role in detecting the encoded afferent signal and relaying this information as part of the body schema. When the input signal is no longer encoded as a result of joint dysfunction and altered afferent input, the cerebellum must adjust to new encodings that dictate the body schema and affect proper execution of the motor task” (p. 529).

 

“Motor sequence learning tasks have been previously shown to induce plasticity within the circuitry of both the motor cortexand the cerebellum…Neck manipulation [chiropractic spinal adjustments] has also been shown to provide a modulatory effect on the motor cortex by reducing the amount of intracortical inhibition.” (Daligadu et al., 2013, p. 533).

 

“This study further adds to the literature by demonstrating an alteration in cerebellar modulation of motor output in SCNP [sub-clinical neck pain] patients when they received a manipulation-based chiropractic treatment before performing motor sequence learning.In the healthy control group, there was no change in CBI seen following motor sequence learning alone” (Daligadu et al., 2013, p. 534).

 

“If the motor sequence learning task had a significant effect on the cerebellum in this group of participants due to their neck pain and altered sensorimotor integration, then it is possible that a decreased level of CBI [cerebellar inhibition] output to the motor cortex would result in an increase in SICI [short-intracortical inhibition]” (Daligadu et al., 2013, p. 534). The significance of this study is that it suggests that the chiropractic spinal adjustment improves not just neck dysfunction, but through plasty changes in the cerebellum, there is resultant motor learning and increased function. 

 

CONCLUSION

 

Based upon the scientific evidence, chiropractic spinal adjustments stimulate mechanoreceptors and nociceptors of the spinal joints resulting in afferent discharges and subsequently causing central modulation with an effect at the cord and brain levels. This causes pain reductions and secondary hyperalgesia (pain reduction in remote regions) which appears to be due to central sensitization of the spinal dorsal horn neurons,while primary hyperalgesia is caused by nociceptor sensitization.

 

This verifies that chiropractic adjustments influence the peripheral nervous system and the central nervous system. In the central nervous system, chiropractic spinal adjustments reduce pain by effecting the thalamus and descending central pain pathways.

 

Chiropractic spinal adjustments also create functional changes in multiple regions of the brain based upon multiple outcome measures that are measureable and reproducible. The areas of the brain affected by chiropractic adjustments effect the following functions: emotions, learning, motivation, memory, consciousness, homeostasis, perception, motor control, self-awareness, cognitive function, voluntary movements, decision making, touch, temperature, pain of the skin- epithelial tissue-skeletal muscles-bones-internal organs and cardiovascular system. This has far reaching effects in setting the foundation for understanding how the adjustment works in systemic and autonomic changes by being able to measure and reproduce functional changes within the brain as direct sequellae.

 

The evidence also reveals that only chiropractic adjustments (high velocity-low amplitude) render these findings and mobilization of joints conclusively do not. In addition, muscle impairment does not automatically improve with symptoms abating creating the necessity for both short and long-term care. This indicates that the deficits in proprioception and motor control, rather than the pain itself, may be the main factors defining the clinical picture and chronicity of various chronic pain conditions.

 

References:

1. Lantz, C. A. (1995). A review of the evolution of chiropractic concepts of subluxation. Topics in Clinical Chiropractic, 2(2). Retrieved from http://www.chiro.org/LINKS/FULL/A_Review_of_the_Evolution.shtml

2. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. Journal of Electromyography Kinesiology, 22(5), 752-767.

3. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons. Journal of Manipulative and Physiological Therapeutics, 37(5), 277-286.

4. Thalamus. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Thalamus

5. Mohammadian, P., Gonsalves, A., Tsai, C., Hummel, T., & Carpenter, T. (2004). Areas of capsaicin-induced secondary hyperalgesia and allodynia are reduced by a single chiropractic adjustment: A preliminary study. Journal of Manipulative and Physiological Therapeutic, 27(6), 381-387.

6. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627.

7. Daligadu, J., Haavik, H., Yielder, P. C., Baarbe, J., & Murphy, B. (2013). Alterations in coritcal and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. Journal of Manipulative and Physiological Therapeutics, 36(8), 527-537.

 

 

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University Of Bridgeport College Of Chiropractic, an Adjunct Assistant Professor of Clinical Sceinces at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the legal community (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at 631-786-4253.

 

Dr. Bill Owens is presently in private practice in Buffalo and Rochester NY and has created chiropractic as the primary spine care referral for the primary care medical community and emergency rooms in both regions.  He is an Associate Adjunct Professor at the State University of New York at Buffalo School of Medicine and Biomedical Sciences and is an Adjunt Assistant Professor of Clinical Sceinces at the University of Bridgeport, College of Chiropractic and Texas Chiropractic College.  He also works directly with doctors of chiropractic to help them build relationships with medical providers in their community. He can be reached at www.mdreferralprogram.com or 716-228-3847  

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

 

Chiropractic vs. Oral Steroids vs. Muscle Relaxants: Outcomes for Low Back Pain and Sciatica

 

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Reference: Studin M. (2015) Chiropractic vs. Oral Steroids vs. Muscle Relaxants: Outcomes for Low Back Pain and Sciatica,The American Chiropractor, 37(7) 42-47

 

Choices. Every health care practitioner is caring for his/her patients having multiple treatment options and often those choices are influenced by pieces of information. That information can be what was learned in formal training, colleagues sharing anecdotal experience, patients giving direct feedback or well-scripted “representatives” of the pharmaceutical industry who only have one agenda…sales.As a result of doctors managing their patients’ conditions, there are two major parameters that are utilized, best medical practice, also known as “experience,” and evidence-based practice or that which has only been concluded in the medical literature. Both have a strong place in a healthcare delivery system with the best possible outcomes as the ultimate goals.

 

“A best practiceis a method or technique that has consistently shown results superior to those achieved with other means, and that is used as a benchmark. In addition, a "best" practice can evolve to become better as improvements are discovered. (“Best Practice,” http://en.wikipedia.org/ wiki/Best practice).”

 

“Evidence-based practice (EBP) is an interdisciplinary approach to clinical practice that has been gaining ground following its formal introduction in 1992. It started inmedicineasevidence-based medicine (EBM) and spread to other fields such as dentistry, nursing, psychology, education, library and information science…” (“Evidence-Based Practice,” http://en.wikipedia.org/wiki/Evidence-based_practice) and other fields. Its basic principles are that all practical decisions made should 1) be based on research studies and 2) that these research studies are selected and interpreted according to some specific norms characteristic for EBP. Typically such norms disregardtheoretical studiesandqualitative studiesand considerquantitative studiesaccording to a narrow set of criteria of what counts asevidence.

 

 

“’Evidence-based behavioral practice’(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses" (“Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

 

This highly-debated topic of best practice vs. evidence-based practice has valid issues on each side, but putting together the two concepts as a hybrid would allow them to thrive in any healthcare delivery system as all options would be considered. This would allow advances in healthcare to save more lives, increased quality of life and at the same time, enough safeguards to prevent abuse of those with one-sided agendas to profit. It would also take the blinders off those who have dogmatic prejudice against that which has been verified to be successful in both the best practice and evidenced-based models (experience and literature).   

For years, too many non-chiropractic practitioners have ignored the “best practice” model or the results reported by both the patients and the practicing chiropractors with treatments regarding low back and leg pain (often associated with herniated discs). These non-chiropractic practitioners refuse to consider chiropractic as a first referral option. The main reason cited over the past few decades as this author’s personal experience has been that there is no literature that proves these claims in spite of patients corroborating their positive experiences with the chiropractors’ claims. As a result of ignorance, blinders and possibly a deep rooted prejudice, too many patients have been and are currently being treated with poor alternatives based upon outcomes that are now being clearly reported. Treatment with both oral steroids and muscle relaxers are two often used, but inferior choices and now the literature verifies why chiropractic is the best possible first-line of referral for diagnosis that are the subject for this paper.

 

ORAL STEROIDS

Goldberg et al. (2015) reported: Despite conflicting evidence, [epidural steroid injections] are frequently offered under the assumption that radicular symptoms are caused by inflammation of the affected lumbar nerve root.Epidural steroid injections are invasive, generally require a pre-procedure magnetic resonance imaging (MRI) study, and expose patients to fluoroscopic radiation. In addition, the US Food and Drug Administration recently warned of rare but serious neurologic sequella from [epidural steroid injections].Oral administration of steroid medication may provide similar anti-inflammatory activity, does not require an MRI or radiation exposure, can be delivered quickly by primary care physicians, carries less risk, and would be much less expensive than an [epidural steroid injection]. Oral steroids are used by many community physicians, have been included in some clinical guidelines,and are noted as a treatment option by some authors.However, no appropriately powered clinical trials of oral steroids for radiculopathy have been conducted to date. To address this issue, we performed a parallel-group, double-blind randomized clinical trial of a 15-day tapering course of oral prednisone vs placebo for patients with an acute lumbar radiculopathy associated with a herniated lumbar disk... (p. 1916).

 

Results showed that “participants in both blinded treatment groups showed an improvement in symptoms over the initial 6 weeks, with more gradual reductions until the 24-week visit, after which changes were more variable. Baseline ODI [Oswestry Disability Index] scores were 51.2 and 51.1 in the prednisone and placebo groups, respectively; corresponding ODI scores at 3 weeks were 32.2 and 37.5” (Goldberg, 2015, p. 1919-1920). This indicates that both at 3 and 6 weeks there was no difference in the placebo vs. oral steroid groups. Among patients with acute radiculopathy due to a herniated lumbar disk, a short course of oral steroids, compared with placebo, resulted in modest improvement in function and no significant improvement in pain” (Goldberg, 2015, p.1922).

 

MUSCLE RELAXANTS

 

Hoiriis et al. (2004) reported, “Reviews of low back pain studies often fail to distinguish between manipulative interventions. Manipulation and spinal manipulative therapy (SMT) are vague terms describing procedures used by chiropractors, physiotherapists, massage therapists, and osteopaths. These maneuvers may decrease ligamentous adhesions and myospastn, increase disk nutrition, or alter the function of the nervous system. The manipulative procedures used in this study, referred to as chiropractic adjustments, involve specific application of force thought to restore mechanical and neurological function to the spine…This study was a randomized clinical trial (RCT) in which subjects and assessors were blinded to the interventions, chiropractic providers were blinded to medical/sham assignment and an independent consultant provided the statistical analysis. Visit lengths and provider-subject interactions were monitored to preserve patient blinding” (p. 389).

 

At the 2 week period, the study revealed that the chiropractic group had statistically slightly better outcomes, but statistically insignificant, than the muscle relaxants and at the 4 week period had a significantly reduced visual analog pain scale of 24% from the muscle relaxant group and 23% from the placebo group. Although the authors reported this as statistically insignificant, I don’t, and one cannot lose sight of the fact that chiropractic outperformed muscle relaxant therapy with the absence of any possibility of side effects from medications, making the utilization of the drugs clinically unnecessary based upon the outcomes of a safer and statistically better alternative.  

 

CHIROPRACTIC TREATMENT

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbert in 2010 that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for a herniated disc, a more recent study by Leemann et al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study, the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Chiropractic Care and Herniated Discs with Leg Pain

 

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

The caveat is that there are patients who could need drugs or surgery and an accurate diagnosis is paramount. It is incumbent upon the doctor of chiropractic to be fully trained in both the diagnostic and treatment facets of care. It is also important that the chiropractor be well-versed in MRI protocols and interpretation as well as disc pathology in order to be able to triage the patient accordingly based upon the clinical presentation inclusive of the MRI results.

 

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5) 

 

CONCLUSION

 

Contemporary research is clearly defining the most effective and safest treatment options for low back pain sufferers with associated leg pain (sciatica). In too many offices today, chiropractic treatment is not being considered the first option for care and the responsibility to change that habit falls to the chiropractic profession. Our profession is no different than the pharmaceutical companies who have an “army” of drug representatives. Pharmaceutical sales representative (formerly detailmen) are sales people employed bypharmaceutical companiesto persuade doctors to prescribe their drugs to patients. Drug companies in theUnited Statesspend ~$5 billion annually sending representatives to doctors,to provide product information, answer questions on product use, and deliver product samples. Companies maintain this provides an educational service by keeping doctors updated on the latest changes in medical science. Critics point to a systematic use of gifts and personal information to befriend doctors to influence their drug prescriptions.”  (http://en.wikipedia.org/ wiki/Pharmaceutical_sales_representative)

 

What makes the chiropractic profession different from the “real world” of business? The answer is absolutely nothing and it is incumbent upon every entity of the profession from individual practitioners to organizations to start educating the public and every referral source because we now have the evidence. Oral steroids offer no relief and modest return to function. Muscle relaxants offer some help, but render worse results than chiropractic care with clearly defined side effects that can be avoided. It has been clearly concluded that chiropractic care is an extremely safe environment regarding side effects. That is verifiable with close to 7 million subjects studied. By considering chiropractic as the first-line for referral, the scientific evidence verifies solutions to low back pain and leg pain inclusive of herniated discs. The results indicate that at 2 weeks, 80.6% and at 3 months 94.5% of those with herniated dics show significant improvement with chiropractic care.

 

References:

1. Best Practice. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Best_practice

2. Evidence-Based Practice. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Evidence-based_practice

3. Goldberg, H., Firtch, W., Tyburski, M., Pressman, A., Ackerson, L., Hamilton, L.,…Avins, A. L. (2015). Oral steroids for acute radiculopathy due to a herniated lumbar disk: A randomized clinical trial. Journal of the American Medical Association (JAMA), 313(19), 1915-1923.

4. Hoiriis, K. T., Pfleger, B., McDuffie, F. C., Cotsonis, G., Elsangak, O., Hinson, R., & Verzosa, G. T. (2004). A randomized clinical trial comparing chiropractic adjustments to muscle relaxants for sub-acute low back pain. Journal of Manipulative and Physiological Therapeutics, 27(6), 388-398.

5. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiskectomy for sciatica? A prospective randomized clinical study. .Journal of Manipulative and Physiological Therapeutics, 33(8), 576-584.

6. Leeman S., Peterson C., Schmid C., Anklin B., Humphrys K. (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging Confirmed Symptomatic Lumbar Disc Herniations Receiving High Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One Year Follow Up, .Journal of Manipulative and Physiological Therapeutics, 37(3), 155-163.

7. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

8. Pharmaceutical Sales Representative. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/ Pharmaceutical_sales_representative

 

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University Of Bridgeport College Of Chiropractic, an Adjunct Professor, Division of Clinical Sciences at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the legal community (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at or at 631-786-4253 or DrMark@AcademyOfChiropractic.com 

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Regaining Arms, Legs, Hands and Feet Function Through Chiropractic Care: The Brain Connection

 

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Frank was an innocent victim of a drive by shooting that left him a quadriplegic, 20+ years ago. This author was asked if I could help make him a little more comfortable as his neck was tight from being locked in one position for a lifetime and I made house calls for 2 weeks to see if I could help reduce some of the neck tightness. After the first adjustment, he regained some use of his right hand and a few fingers and I never had an explanation as to why because I didn’t treat the specific spinal segments connected to those fingers. From what I recall, Frank went on to become a computer programmer. On the opposite end of the spectrum, Rob was a defensive tackle for an NFL football team playing at an all-star level. He came to see me because his back was sore from the pounding of a life of football. After 3 months of care, he reported that his time in the 40 yard dash decreased, his vertical jump increased and he was able to lift more weights in both his arms and legs than before. All things for which I had no explanation for all those years ago.  

 

We are now starting to get answers and reasons for what were once considered “miracles.” The research has verified that the chiropractic adjustment does not deliver miracles, it only helps the body work better and we now know why. This article could easily be titled, "Regaining All Movement and Function with the Chiropractic Spinal Adjustment," and would not be inflammatory based upon the scientific evidence being published today. With an aging population reaching 35,000,000 in 2030 according to Kleinpell, Fletcher, and Jennings (2015), and a mobile society that often gets injured, a key component to health is one of function. In the musculoskeletal genre, functioning is the ability to move and perform activities that range from those required of professional athletes and artists to those of the elderly such as simply walking or writing. In every society, people need to be able to move and function to experience life at its fullest. 

 

According to Haavik and Murphy (2012) “There is growing body of research on the effects of spinal manipulation (chiropractic spinal adjustments) on sensory processing, motor output, functional performance and sensorimotor integration…how an initial episode(s) of back or neck pain may lead to ongoing changes in input from the spine which over time lead to altered sensorimotor integration of input from the spine and limbs” (p. 768). What this simply means is that chiropractic spinal adjustments change how the brain gets its information, how it processes that information and then how it sends it back to the different regions of the body so that we can function and move better. In addition, the research has given evidence that these brain changes cause pain to decrease as a result of the chiropractic spinal adjustments and this can affect all of the limbs.

 

Haavik and Murphy (2012) went on to say, “What has also become apparent is that these plastic changes may occur in a manner that is subjectively positive for the individual, such as with motor learning to enable complex finger movement (e.g. playing the piano). This is known as adaptive neuroplasticity (the brain adapting better.) However, studies are also showing that these plastic changes may occur in a manner that has decidedly negative subjective outcomes for the individual, known as maladaptive neural plastic changes. There is a growing body of literature that demonstrates maladaptive plastic changes are present in a variety of pain conditions/syndromes and musculoskeletal dysfunction and that such adaptive changes can occur remarkably fast following an injury” (p. 769).

 

What this means is that injuries play a significant role in function and individuals can lose function very quickly, but a chiropractic spinal adjustment can help regain that function. The research also suggests that because this is an issue with the brain losing correct information from the limbs, parts not injured also lose function and conversely, when unaffected areas get treated, the brain makes adaptive changes and resolves pain in multiple areas.

“Numerous activities of daily living are dependent on appropriate interaction between sensory and motor systems allow us to engage with our environment. It allows us to reach for and grasp objects, detect and turn towards an auditory stimuli or respond to perturbations from the environment in order to maintain postural stability, balance and locomotion. A breakdown anywhere in these multimodal sensorimotor feedback loops has the potential to greatly affect other interconnected neuroanatomical subsystems, in either an adaptive or maladaptive manner” (Haavik & Murphy, 2012, p. 769).

 

Gay, Robinson, George, Perlstein, and Bishop (2014) reported that chiropractic spinal adjustments create functional changes in multiple regions of the brain based upon multiple outcome measures. In the study by Gay et al. (2014), this was measureable and reproducible. In addition, this has far reaching affects in setting the foundation for understanding how the adjustment works in systemic and possibly autonomic changes by being able to measure and reproduce functional changes within the brain as direct sequellae.

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5).

 

References:

  1. Kleinpell, R., Fletcher, K., Jennings, B. M. (2008). Reducing functional decline in the elderly. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK2629/
  2. Haavik, H., & Murphy B. (2012). The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. Journal of Electromyography and Kinesiology, 22(5), 768-76.
  3. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. Journal of Manipulative and Physiological Therapeutics, 37(9), 614-627.
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

Pregnancy, Low Back Pain and Chiropractic

 

A report on the scientific literature 


 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

It has been this authors personal experience that pregnant woman experiencing low back pain secondary to her pregnancy has been told to “wait and see” over time, with the hope that the back pain would go away. This is predominantly because the “drug option” is off the table with complications to the fetus and most doctors are not willing to take the chance to relieve mechanical (no tumors, fractures or infection) low back pain.  My patients reported to me that their obstetricians told them their pain was a result of altered biomechanics and hormonal changes affecting the muscles and ligament of their spine. Current research has now verified through scientific evidence what practicing chiropractors and their patients have been claiming for decades, that chiropractic work to help relieve pain for pregnant woman with a safe, conservative treatment for both mother and the fetus. As a result of the effectiveness and safety, it now demands that chiropractic be the first referral option for pregnant woman experiencing low back pain.

 

 

According to Petersen, Muhlemann and Humphreys (2014) “Low back and pelvic pain in pregnant women is such a common phenomenon that it is often considered a normal part of the pregnancy [1-3]. However, the high prevalence of this problem (50-80% of women) and the impact that this may have on their quality of life, as well as the fact that back pain during pregnancy is commonly linked to low back pain persisting after pregnancy, mandates that it be taken seriously by health care practitioners. Many of these patients rate their back pain as moderate to severe with a small percentage claiming to be significantly disabled by the pain [6-8]. Pregnancy-related low back pain is most often divided into 3 categories based on location. These are: lumbar spine pain, posterior pelvic pain, or a combination of these two, with posterior pelvic pain reported to be the most common presentation and the location most specific for pregnant patients. Although the etiology of low back pain associated with pregnancy is not definitively known, the predominate theories include biomechanical changes due to the enlarging uterus resulting in an increasing lumbar lordosis and the influence of the hormone relaxin on stabilizing ligaments leading to hypermobility of joints.” [pg. 2]

 

Petersen went on to report “The results of this current study which showed that a high proportion of pregnant patients with LBP undergoing chiropractic treatment reported clinically relevant improvementsupport those published in a recent cohort study as well as the recent randomized clinical trial (RCT) looking at chiropractic treatment for pregnant patients with low back or pelvic pain.” [pg. 5] Meaning, that chiropractic works for low back pain in pregnant woman and it has been proven in many scientific studies. The result showed that at various times during the pregnancy, upwards of 90% of pregnant woman reported positive results. The specific results reported:

 

52% improved at 1 week

70% improved at 1 month

85% improved at 3 months

90% improved at 6 months

 

All of these were with chiropractic care only and no drugs or any other type of intervention beyond patient education by the chiropractor.

 

 

Mullen ET. Al reported that when interviewing midwives, that 88.8% had an experience with chiropractors and 97% was positive. In addition, 94.5% of those had chiropractors treated their children and had a positive experience.  The most revealing statistic is one of safety. 100% of midwives question answered that chiropractic was safe for their pregnant patients.

 

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5) 

 

References:

  1. Petersen C., Muhlemann D., Humphreys B. (2014) Outcomes of pregnant patients with low back pain undergoing chiropractic treatment: a prospective cohort study with short term, medium term and 1 year follow-up, Chiropractic & Manual Therapies 22:15, 1-7
  2. Mullin, L., Alcantara J., Barton D., Dever L. (2011) Attitudes and Views on Chiropractic: A Survey of United States Midwives, Complementary Therapies in Clinical Practice 17 (2011) 135-140
  3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Pregnancy and Chiropractic: Care and Safety

“A Report on Midwives & Chiropractic”

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

 

Being a chiropractor for 34 years, I have treated hundreds of pregnant patients in my career for a host of “pregnancy related spinal conditions.” The impetus for conservative chiropractic care was in part because the pregnant patient could not utilize drugs as a result of contraindications with pregnancy and also in part because of the positive experiences both patients, midwives and obstetricians have observed through the years. It has been my persona observation that chiropractic is a safe alternative for pregnant patients and should always be the first option for anyone (pregnant or not) before the utilization of drugs, making them needless if a non-drug approach delivers positive outcomes. 

 

According to Mullen, Alcantara, Barton and Dever (2011) “Chiropractors and midwives, with their conservative approach to patient care grounded in a holistic and vitalistic philosophy, share many common ideals in the care of patients. In the age of evidence based practice with an emphasis on an integrative approach to patient care, chiropractors and midwives have a unique opportunity to develop partnerships in this regard.” They found “that 57% of their nurse-midwife responders recommended chiropractic to their pregnant patients to address pregnancy-related neuromusculoskeletal (NMS) complaints, sciatica and fetal malposition. In a survey of both lay-midwives and nurse-midwives on their use of CAM (complementary and alternative medicine)  therapies, found chiropractic was the most popular CAM therapy to address musculoskeletal back pain. There are also indicators that chiropractors advocate for a strong working relationship with midwivesparticularly in addressing fetal malposition during pregnancy.” Pg. 135

 

Mullen Et. Al went on to report that 98.9% of midwives were aware that chiropractors worked with “birthing professionals” and 92.5% were knowledgeable about chiropractic’s role in prenatal care. 88.8% had an experience with chiropractors and 97% was positive. In addition, 94.5% of those had chiropractors treated their children and had a positive experience.  The most revealing statistic is one of safety as 100% of midwives questioned answered that chiropractic was safe for their pregnant patients. 

 

We are now starting to get answers from disparate sects of healthcare that verify what was once considered “miracles” with maladies such as fetal repositioning during pregnancy. These research findings verify that the chiropractic adjustment does not deliver miracles, it only helps the body work better and we now know why. 

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5) 

 

References:

 

 

  1. Mullin, L., Alcantara J., Barton D., Dever L. (2011) Attitudes and Views on Chiropractic: A Survey of United States Midwives, Complementary Therapies in Clinical Practice 17 (2011) 135-140
  2. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

 

Research Proves Chiropractic Adjustments Affect Multiple Areas, Not Just the Area Treated: THE BRAIN CONNECTION

 

(i.e.) Neck Treatment Reduces Pain in Low Back

 

A report on the scientific literature 


 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

It is a very common scenario historically and in contemporary chiropractic offices where patients come to get treated for one body part and another body part feels better. To be more specific a patient will come in with neck pain as their primary complaint and upon treating that neck problem with chiropractic spinal adjustment their low back feels better. Through the years many patients have considered this a “miracle” and the doctor of chiropractic simply accepted this clinical finding as an everyday experience with no concrete answers. Thanks to contemporary research, there are answers.

 

Coronado et al. (2012) reported that, “Reductions in pain sensitivity, or hypoalgesia, following SMT [spinal manipulative therapy or the chiropractic adjustment] may be indicative of a mechanism related to the modulation of afferent input or central nervous system processing of pain” (p. 752). This indicates that the chiropractic spinal adjustment reduces pain by effecting the thalamus and descending central pain pathways and effects multiple areas of the body, not just the area directly treated.

 

 

One of the main questions asked by Coronado et al. (2012) “…was whether SMT (chiropractic adjustments) elicits a general response on pain sensitivity or whether the response is specific to the area where SMT is applied. For example, changes in pain sensitivity over the cervical facets following a cervical spine SMT would indicate a local and specific effect while changes in pain sensitivity in the lumbar facets following a cervical spine SMT would suggest a general effect. We observed a favorable change for increased PPT [pressure pain threshold] when measured at remote anatomical sites and a similar, but non-significant change at local anatomical sites. These findings lend support to a possible general effect of SMT beyond the effect expected at the local region of SMT application (p. 762).

 

Reed, Pickar, Sozio, and Long (2014) reported:

 

…forms of manual therapy have been clinically shown to increase mechanical pressure pain thresholds (i.e., decrease sensitivity) in both symptomatic and asymptomatic subjects.Cervical spinal manipulation has been shown to result in unilateral as well as bilateral mechanical hypoalgesia. Compared with no manual therapy, oscillatory spinal manual therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1, and L3 in individuals with rheumatoid arthritis. The immediate and widespread hypoalgesia associated with manual therapy treatments has been attributed to alterations in peripheral and/or central pain processing including activation of descending pain inhibitory systems. Increasing evidence from animal models suggests that manual therapy activates the central nervous system and, in so doing, affects areas well beyond those being treated. (p. 277)

 

 

We are now starting to get answers and reasons for what was once considered “miracles.” The research has verified that the chiropractic adjustment does not deliver miracles, it only helps the body work better and we now know why.

 

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5) 

 

References:

  1. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z.
  2. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons. Journal of Manipulative and Physiological Therapeutics, 37
  3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

THE BRAIN CONNECTION:

Research Proves Chiropractic Adjustments Affect Emotions, Learning, Memory, Consciousness, Motivation, Homeostasis, Perception, Motor Control, Self-Awareness, Cognitive Function, Voluntary Movement, Decision Making, Touch and Pain

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP 

William J. Owens DC, DAAMLP

For decades chiropractors and their patients have been experiencing many positive outcomes that have gone well beyond the pain treatment they originally sought. This author has been practicing for 34 years and has witnessed what many thought were miracles, but the seasoned chiropractor simply called it an everyday occurrence, albeit lacking in an explanation that was verified through research and published in a universally accepted forum, the scientific literature. Notwithstanding, we practitioners and our patients have persevered for over 115 years having to rely simply in results. 

 

In 2014, Gay and fellow researchers concluded “…pain-free volunteers processed thermal stimuli applied to the hand before and after thoracic (mid-back) spinal manipulation (chiropractic spinal adjustment)).  What they found was that after thoracic manipulation, several brain regions demonstrated a reduction in peak BOLD [blood-oxygen-leveldependent] activity. Those regions included the cingulate, insular, motor, amygdala and somatosensory cortices, and the PAG [periaqueductal gray regions]” (p. 615). In other words, thoracic chiropractic adjustments produced direct and measureable effects on the central nervous system across multiple regions, which is responsible for the processing of emotion (cingulate cortex, aka limbic cortex) and the insular cortex, which also responsible for regulating emotion as well has homeostasis. The motor cortex is involved in the planning and execution of voluntary movements, the amygdala’s primary function is memory and decision making (also part of the limbic system), the somatosensory cortex is involved in processing the sense of touch (remember the homunculus) and, finally, the periaqueductal gray is responsible for descending pain modulation (the brain regulating the processing of painful stimuli).

 

The following regions of the brain are affected and the following functions are affected:

 

 

Brain Region

Function

Cingulate Cortex

Emotions, learning, motivation, memory

Insular Cortex

Consciousness, homeostasis, perception, motor control, self-awareness, cognitive function

Motor Cortex

Voluntary movements

Amygdala Cortex

Memory, decision making, emotional reactions

Somatosensory Cortex

Proprio and mechano-reception, touch, temperature, pain of the skin, epithelial, skeletal muscle, bones, joints, internal organs and cardiovascular systems

Periaqueductal Gray

Ascending and descending spinothalamtic tracts carrying pain and temperature fibers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are now starting to get answers and reasons for the results that was once considered “miracles.” The research has verified that the chiropractic adjustment does not deliver miracles, it only helps the body work better and we now know why. 

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5) 

 

Reference:

  1. Gay, C. W., Robinson, M. E., George, S. Z., Perlstein, W. M., & Bishop, M. D. (2014). Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. Journal of Manipulative and Physiological Therapeutics, 37
  2. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

Acute and Chronic Herniated Discs Have Significantly Favorable Outcomes With Chiropractic Care

 

95% Reported Improvement 

 

A report on the scientific literature 


 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Approximately 70% of the population will have back pain at some point in time in their life according to Lehman ET. Al. (2014). The pain ranges from mild to either moderate or severe and can often be debilitating and associated with or without leg pain if it’s originating from your lower back. Treatment for this common problem is usually broken up into two categories, surgical versus conservative care however, I am going to break it into three categories: surgical, medication and conservative care. This article is going to focus on the continual growing body of evidence of treatment of herniated discs via conservative care and specifically with a chiropractic spinal adjustment.

 

It was reported by McMorland, Suter, Casha,du Plessis, andHurlbertin 2010 that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for herniated disc a more recent study (Lehman ET. Al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year mark after the onset of the original complaint. Although one might argue that the patient would have gotten better with no treatment it was reported that after two weeks of no treatment only 36% of the patients felt better and at 12 weeks up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to their normal life without pain, drugs or surgery.

 

             Chiropractic Care and Herniated Discs with Leg Pain

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

 

The caveat is that there are patients who could need drugs or surgery and an accurate diagnosis is paramount and it is incumbent upon the doctor of chiropractic to be fully trained in both the diagnostic and treatment facets of care. It is also important that the chiropractor is well-versed in MRI protocols and interpretation as well as disc pathology to be able to triage the patient accordingly based upon the clinical presentation inclusive of the MRI results.

 

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon et al. (2014) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM (spinal manipulation) induces injury into normal healthy tissues has been identified.(Whedon et al.,2014, p. 5) 

 

References:

 

  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients With Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniations Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiscectomy for sciatica? A prospective randomized clinical study.Journal of Manipulative and Physiological Therapeutics, 33
  3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2014). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69.Spine, [Epub ahead of print]1-33.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

 

Neck Pain (Torticollis), Headaches, Dizziness, Radiating Pain, Nausea, Depression, Confusion, Ringing in the Ears Show Good Outcomes With Chiropractic Care

A report on the scientific literature 


By: Marc D. Weiss, D.C., DAAMLP

Mark Studin DC, FASBE(C), DAAPM, DAAMPL

Although neck pain is the number one bodily injury or pain complaint from the general population in the west, many studies verify that chiropractic care for common neck pain has been effective.  It has also been generally recognized that chiropractic care has helped a myriad of maladies and we are just starting to see those outcomes or positive results in the scientific literature to verify what both chiropractors and their patients have been reporting for over 100 years. The following study looks at outcomes of chiropractic treatment for neck pain and concurrent complaints throughout the Netherlands.

Rubenstein ET. Al (2007) used 79 chiropractors who each recruited approximately 10 patients. The patients were between the ages of 18-65 and had not received treatment 3 months prior to beginning this study. Participants who were treated for neck pain in this study all had different levels and frequency of visits with the chiropractor. Chiropractic spinal adjustments were the primary form of treatment. Each patient was asked a series of questions to assess their treatment success during each visit as well as during follow up appointments at 3 months and 12 months. Every symptom, including fatigue, headaches, nausea, and depression, significantly decreased from visit to visit, and significantly increased after the visits ceased.

This study covered a large area of patients with varying degrees and specifics of neck pain, as well as chiropractors with varying methods of treatment. Unlike many studies that gather data on effectiveness of treatments, especially pharmaceutical companies, this study showed statistics of both success in curing neck pain as well as adverse effects that arose during and after treatment. Only 5 of 4891 patients in the study group reported worsening of pain at the end of the study, which was 12 months after treatment. Also, only 2 of 4891 patients reported worsening of pain at the 3 month mark, which is when treatment for neck pain stopped.

The most prevalent improvement of neck pain in patients occurred during their first three visits. Additionally, most symptoms other than neck pain also improved during the first 3 months of treatment. Almost 50% of the patients were fully recovered when interviewed at their fourth visit. Almost 75% of the patients were fully recovered when interviewed at the three and twelve month follow up visits.

The following graph was presented by Rubenstein ET. Al (2007)

 

As you can see from the above graph, by the 2nd visit to a chiropractor, there has been significant improvement that continues to improve by the 4th visit. Although these patients initially sought care for neck pain, this study shows that many complaints respond favorably to chiropractic care and each complaint requires more independent research. The most impressive stastistic was 99.4% of people in the study would visit a chiropractor again at the 2nd visit and 98.7% at the 4th visit. That alone gives more insight than most other variables. If it wasn't successful, those numbers would not be there. 

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.Whedon et al. (2014) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded,“No mechanism by which SM (spinal manipulation) induces injury into normal healthy tissues has been identified.(Whedon et al.,2014, p. 5) 

Reference:  

  1. Rubinstein S., Lebouf-Yde C., Knol D., de Koekkoek T., Pfeifle C., van Tulder M., (2007) The Benefits Outweigh The Risks For Patients Undergoing Chiropractic Care For Neck Pain: A Prospective, Multicenter, Cohort Study, Journal of Manipulative & Physiological Therapeutics 30(6) page 408-418
  2. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2014). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69.Spine,[Epub ahead of print]1-33.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

The Journal of the American Medical Association Suggest a Link between Pregnant Woman – Back Pain – Tylenol Use & ADHD: Chiropractic Offers a Solution

 

A report on the scientific literature 


 

By Travis McKay DC,

William J Owens Jr DC DAAMLP CPC

Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Liew, Ritz, Rebordosa, Lee and Olsen (2014) reported that pregnant women, at some point during their pregnancies, may experience musculoskeletal pain, particularly in the lower back, pelvis and hips.  Since the symptoms are related to biomechanical changes associated with pregnancy, it is important to be able to offer relief while limiting potentially harmful side effects.   One of the most common ways to treat musculoskeletal pain in general and during pregnancy, in particular, is through over-the-counter (OTC) medications.  Most doctors and family members will recommend acetaminophen, more commonly known and marketed as Tylenol, as a pain reliever and as a safe choice for both mothers and their babies. However, Liew et al. (2014) reported, “Acetaminophen (paracetamol) is the most commonly used medication for pain and fever during pregnancy in many countries. Research data suggest that acetaminophen is a hormone disruptor, and abnormal hormonal exposures in pregnancy may influence fetal brain development” (p. 313).   

According to Liew et al. (2014):

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioral disorders worldwide, characterized by inattention, hyperactivity, increased impulsivity, and motivational/emotional dysregulation. Hyperkinetic disorder (HKD; International Statistical Classification of Diseases, 10th Revision) is a particularly severe form of ADHD (Diagnostic and Statistical Manual of Mental Disorders [Fourth Edition]). The etiology of HKD/ADHD is not well understood but both environmental and genetic factors are believed to contribute. (p. 313) 

The study reported that children whose mothers used acetaminophen during pregnancy were at higher risk for a diagnosis of hyperkinetic disorder, use of attention deficit hyperactivity disorder (ADHD) medications, and/or having ADHD like behaviors by age 7.  The study found that these outcomes were seen more in the mothers who used acetaminophen during more than one trimester of their pregnancies and that the more acetaminophen that was taken, the greater the likelihood that one of the previously mentioned conditions would be seen in their children.  The authors reported, “We observed an increased risk for ADHD-like behaviors in children at age 7 years with maternal acetaminophen use during pregnancy…as well as use in more than 1 pregnancy trimester, especially in later pregnancy, and a stepwise increase in risks with increasing frequency of use throughout pregnancy” (Liew et al., 2014, p. 318).

What does this mean for pregnant women?  If additional studies confirm the association between acetaminophen and hyperkinetic disorder and ADHD, what options are available for pregnant women who are suffering from spinal pain during pregnancy?  The answer lies in understanding other forms of pain management and non-medication based therapies which are already available to pregnant women.    According to Coronado et al. (2012), “The mechanism of SMT [spinal manipulation therapy] remains elusive, but SMT appears to modulate pain through both central [brain and spinal cord] and peripheral pathways [down the arms and legs]. Studies have investigated the effect of SMT using variable experimental pain modalities including chemical, electrical, mechanical, and thermal stimuli. SMT demonstrated a favorable effect over other interventions on pressure pain thresholds (PPT)” (p. 763).  This means that the chiropractic adjustment has a very specific influence on the body’s perception and management of pain. 

Since the most common reason for pregnancy-related spine and pelvic pain during pregnancy has to do with altered mechanics, a non-drug approach to reducing pain and increasing function should be considered as a first-line alternative to eliminate the possible connection between acetaminophen and ADHD. Chiropractic care offers a neuromuscular and spinal biomechanical approach that focuses on the underlying causes of a patient’s spinal-related pain.   

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration, particularly as a first line treatment. Whedon, Mackenzie, Phillips, and Lurie (2015) based a study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury in normal healthy tissues has been identified” (Whedon et al., 2015, p. 265).

Chiropractic should be considered as a first-line, safe choice for pregnant woman with back pain to avoid any potential side effects from all medications, when clinically indicated.

References:

1. Liew, Z., Ritz, B., Rebordosa, C., Lee, P. C., & Olsen, J. (2014). Acetaminophen use during pregnancy, behavioral problems, and hyperkinetic disorders. JAMA Pediatrics, 168(4), 313-320.

2. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. Journal of Electromyography and Kinesiology22(5), 752-767.

3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

           

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

More Research