The Chiropractic Adjustment Changes Brain Function

 

The Evidence of Increased Muscle Strength is Added to Pain Sensitivity and Autonomic Changes

 

Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

Matt Erickson DC, FSBT

 

A report on the scientific literature

 

There is a growing body of evidence that a high-velocity, low-amplitude (HVLA) chiropractic spinal adjustment (CSA) has a significant influence on cortical (brain) and other central (cord) changes. This is significant as the evidence is now answering more questions on why has chiropractic has had such a profound effect on a myriad of conditions beyond back pain. Technology, including but not limited to functional MRI, NCV, EEG and sEMG renders demonstrable validation of the effect the chiropractic spinal adjustment has on changes in central function.

 

A chiropractic spinal manipulation/adjustment is a specific HVLA thrust maneuver designed to correct spinal patho-neuro-biomechanics (remove nerve irritation/interference, restore biomechanical balance), increases important proteins such as Substance P (Evans 2002) and makes plastic changes to the central nervous system. Conversely, a spinal manipulation as manual therapy or thrust joint manipulation (TJM) performed by physical therapists (PT’s) is a generalized non-specific low-velocity, low-amplitude of non-specific HVLA thrust maneuver of joints and connective tissue to improve motion and decrease muscle tension.

 

 

Essentially, the intent of TJM is in treating pain and dysfunction. That is not to say a non-specific manipulation will not help a patient. However, when spinal manipulation is not performed as a chiropractic based neuro-biomechanical corrective adjustment or from a salutogenic health management perspective, it is something else entirely. Therefore, spinal manipulation as a chiropractic adjustment delivered by a chiropractor is not synonymous with TJM, mobilization or spinal manipulation delivered by a PT.

 

Reed, Pickar, Sozio, and Long (2014) reported, “.forms of manual therapy have been clinically shown to increase mechanical pressure pain thresholds (i.e., decrease sensitivity) in both symptomatic and asymptomatic subjects. Cervical spinal manipulation (chiropractic HVLA) has been shown to result in unilateral as well as bilateral mechanical hypoalgesia. Compared with no manual therapy, oscillatory spinal manual therapy at T12 and L4 produced significantly higher paraspinal pain thresholds at T6, L1, and L3 in individuals with rheumatoid arthritis. The immediate and widespread hypoalgesia associated with manual therapy treatments has been attributed to alterations in peripheral and/or central pain processing including activation of descending pain inhibitory systems. Increasing evidence from animal models suggests that manual therapy activates the central nervous system and, in so doing, affects areas well beyond those being treated. (p. 277)

 

Reed et al. (2014) also reported, The finding that only the higher intensity manipulative stimulus (ie, 85% BW [body weight] vs 55% BW or control) decreased the mechanical sensitivity of lateral thalamic neurons to mechanical trunk stimulation coincides with other reports relating graded mechanical or electrical stimulus intensity to the magnitude of central inhibition. Several clinical studies indicate that spinal manipulation [chiropractic spinal adjustment] alters central processing of mechanical stimuli evidenced by increased pressure pain thresholds and decreased pain sensitivity in asymptomatic and symptomatic subjects following manipulation. (p. 282)

 

Daligadu, Haavik, Yielder, Baarbe, and Murphy (2013) reported, There is also evidence in the literature to suggest that muscle impairment occurs early in the history of onset of spinal complaints, and that such muscle impairment does not automatically resolve even when pain symptoms improve. This has led some authors to suggest that the deficits in proprioception and motor control, rather than the pain itself, may be the main factors defining the clinical picture and chronicity of various chronic pain conditions. Furthermore, recent evidence has demonstrated that spinal manipulation (CSA) can alter neuromuscular and proprioceptive function in patients with neck and back pain as well as in asymptomatic participants. For instance, cervical spine manipulation (CSA) has been shown to produce greater changes in pressure pain threshold in lateral epicondylalgia than thoracic manipulation; and in asymptomatic patients, lumbar spine manipulation (CSA) was found to significantly influence corticospinal and spinal reflex excitability. Interestingly, Soon et al did not find neurophysiological changes following mobilization on motor function and pressure pain threshold in asymptomatic individuals, perhaps suggesting that manipulation [chiropractic spinal adjustments], as distinct from mobilization, induces unique physiological changes. There is also accumulating evidence to suggest that chiropractic manipulation can result in changes to central nervous system function including reflex excitability, cognitive processing, sensory processing, and motor output. There is also evidence in SCNP [sub-clinical neck pain] individuals that chiropractic manipulation alters cortical somatosensory processing and elbow joint position sense. This evidence suggests that chiropractic manipulation may have a positive neuromodulatory effect on the central nervous system, and this may play a role in the effect it has in the treatment of neck pain. It is hoped improving our understanding of the neurophysiological mechanisms that may precede the development of chronic neck pain in individuals with sub-clinical neck pain (SCNP) will help provide a neurophysiological marker of altered sensory processing that could help determine if an individual is showing evidence of disordered sensorimotor integration and thus might benefit from early intervention to prevent the progression of SCNP into more long-term pain states.  (p. 528)

 

Christriansen, Niazi, Holt, Nedergaard, Duehr, Allen, Marshall, Turker and Haarvik (2018) discussed the effects of a single session of a chiropractic spinal manipulation (CSA) on strength and cortical drive. They studied the effects upwards of 60 minutes and further testing is needed to determine the long-term effects of the adjustment. They found in “blinded studies” that “the increased maximum voluntary contraction force lasted for 30 min and the corticospinal excitability increase persisted for at least 60 minutes.” (pg. 737)

 

Christiansen et. Al (2018) also reported, “The increased V-wave amplitudes observed in the current study possibly reflect an increased cortical drive in the corticospinal pathways and corresponding increased excitability of the MNs following SM found differences in the cortical drive in volleyball athletes competing at different levels, and argued that elite players had increased cortical drive correlating to their biomechanical performance. The absence of change in the H-reflex in the presence of the increased MVC along with increased V-waves suggests that it's possible that the change post manipulation occurred at supraspinal centers involving a cortical neural drive. The V-waves represent cortical drive. The absence of change in the H-reflex alone suggests that the spinal motor neurons and the excitability of the spindle primary afferent synapses on the spinal motor neurons did not change as a result of SM.” (pg. 745) The above paragraph indicates there is no input at the cord level as the H-Reflex exhibited no changes.

 

 

Increased motor function for a minimum of 60 minutes post-chiropractic spinal adjustment has far-reaching manifestations for a dichotomy of the population. Athletes at every level will benefit from increased motor function and patients suffering from either muscular or neuro-degenerative illnesses, such as Parkinson’s, Amyotrophic lateral sclerosis (ALS), Muscular Dystrophy and others will also potentially benefit. Although this article touched on PT manual therapy, low-velocity, low-amplitude or non-specific thrust joint manipulation; these forms of treatment do not render the outcomes a chiropractic spinal adjustment.

 

Christiansen et. Al (2018) concluded and perfectly positioned the effect of a chiropractic spinal adjustment and the effect on the brain, “this study supports a growing body of research that suggests chiropractic spinal manipulation’s main effect is neuroplastic in nature and affects corticospinal excitability. Changes in both cerebellum and prefrontal cortex function have been implicated post-spinal manipulation in previous research studies. The presence of mild, recurrent spinal dysfunction has been shown to be associated with maladaptive neural plastic changes, such as alterations in elbow joint position sense mental rotation ability, and even multisensory integration Furthermore, spinal manipulation of dysfunctional spinal segments has been shown to impact somatosensory processing, sensorimotor integration and motor control.” (pg. 746)

 

References:

 

  1. Reed, W. R., Pickar, J. G., Sozio, R. S., & Long, C. R. (2014). Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons. Journal of Manipulative and Physiological Therapeutics, 37
  2. Daligadu, J., Haavik, H., Yielder, P. C., Baarbe, J., & Murphy, B. (2013). Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. Journal of Manipulative and Physiological Therapeutics, 36.
  3. Christiansen, T. L., Niazi, I. K., Holt, K., Nedergaard, R. W., Duehr, J., Allen, K., ... & Haavik, H. (2018). The effects of a single session of spinal manipulation on strength and cortical drive in athletes. European journal of applied physiology118

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Efficacy of Chiropractic Treatment for Post-Surgical Continued Low Back and Radicular Pain

 

81% of chiropractic post-surgical patients showed greater than 50% reduction in pain.

 

Mark Studin DC

William J. Owens DC

 

A report on the scientific literature

 

Park et. Al (2016) reported that low back pain radiating into the lower extremities have greater impact on disability and time off work that any other medical condition. Vleggeert-Lankamp, Arts and Jacobs (2013) reported “The term ‘failed back surgery syndrome’ (FBSS) is used to describe a clinical condition defined by persistent or recurrent complaints of leg pain and/or back pain regardless of one or more surgical procedures of the lumbar spine. The definition of FBSS (failed back surgery syndrome) is modified by some authors by adding that at least one surgical intervention was to be performed and that pain should persist after the last surgical intervention, for at least one year.1 The term implies that the surgery plays a role in the cause of the pain, although in most cases the surgical intervention was technically successful. It is known that nearly 20% of patients undergoing spine surgery will require secondary surgery for persistent pain or surgery-related complications during the subsequent years.” (pg. 48) El-Badawy and El Mikkawy (2016) reported that failed back surgery syndrome occurs with lateral disc surgery upwards of 17%, spinal stenosis 29% and instability 14.8%.

 

Perhaps the reason for failed back surgery syndrome is what the surgeons have considered their “gold standard, fusion and the ensuing loss of mobility of the spinal motor unit. Mulholland (2008) reported “Spinal fusion became what has been termed the “gold standard” for the treatment of mechanical low back pain, yet there was no scientific basis for this.” (pg. 619) The history of spinal fusion is both fascinating and disturbing and reveals why chiropractic both helps post-surgical cases and should always be considered first, prior to surgery as an option.

Mulholland (2008) continued:


In 1962 Harmon presented a review paper at the western orthopaedic association meeting in San Francisco, in which the term “Instability” appears.

However, Harmon’s description of what he meant by instability (unfortunately in a footnote) is revealing “Spinal instability refers to a low back-gluteal-thigh clinical triad of symptoms that may be accompanied (overt cases) by incapacitating regional weakness and pain. This is the effect of disk degeneration with or without disc hernia. Some may be asymptomatic or slightly symptomatic when instability is compensated by muscle or ligament control. It does not refer to spinous process or laminal hypermobility which some surgeons like to demonstrate at the operating table nor does this clinical concept parallel the common spinal hypermobility, which is the product of intervertebral disc degeneration, demonstrable in flexion-extension filming of the region, since the anatomic hypermobility is not always productive of symptoms”

Sadly this description of instability appears to have been ignored, and the concept of mechanical instability as a cause of back pain was progressively accepted. Harmon’s view of the effect of fusion was that it cured pain by reducing the irritation of the neural contents produced by movement. His paper was influential as he emphasized the importance of appropriate investigations prior to fusion and the segmental nature of back pain but unfortunately his use of the term instability was interpreted as supporting the view that segmental abnormal movement was the cause of the pain.

In 1965 Newman in an editorial concerning lumbo-sacral arthrodesis (surgical immobilization) refers to the need to stabilize the lumbar spine in patients with back pain after discectomy for a lumbar root entrapment.

At the beginning of the seventies the perception was that disc degeneration led to abnormal translational movement, and this was painful.

McNab in 1971 who had done much work on the disturbance of movement in the degenerate disc described what he termed the “traction spur,” a particular type of anterior osteophytes which he said was related to an abnormal pattern of translational movement. This view again supported the concept of instability. He added the important caveat that it “was impossible to establish the clinical significance of the traction spur as a statistically valid investigation the traction spur was revisited in the late eighties and was shown to be no different to claw osteophytes, and often both would be present in the same patient. It was not related to abnormal movement.”

Although McNab used the term instability, he used it in the sense that the spine was vulnerable to acute episodes of pain, because the degenerate disc rendered it more easily injured. He did not view it as a cause of chronic back pain.

Kirkaldy Willis set out his views on instability in 1982. In “Instability of the Lumbar Spine” he described the process of disc degeneration as passing through a stage of dysfunction, (intermittent pain), instability which caused more persistent pain but then with time stabilizing to a painless state. This was his explanation for the observed fact that many very degenerate discs were painless. However, he at that stage was somewhat unhappy with an entirely mechanistic view for pain. Hence, he writes “Instability can be defined as the clinical status of the patient with a back problem who with the least provocation steps from the mildly symptomatic to a severe episode”. Further he writes “Detectable increased motion does not always solicit a clinical response, and that abnormal motion may be abnormal increase or abnormal decrease”. He further writes “It is insufficient to detect the abnormal increased motion, but the mechanism by which it precipitates the symptomatic episode must also be identified”. Indeed in the seven cases he reported only one patient had backache alone, the others were all radicular problems. His paper shows that identifying abnormal movement establishes the fact that the segment is disordered, but he does not in that paper indicate that movement itself is the cause of pain.

Subsequently in his very influential book “Managing Back Pain” in 259 pages just one page is devoted to the rationale of lumbar fusion. The only reason for fusion appeared to be that, other treatments had failed, that it was reasonable from the psychological viewpoint, and that instability was present. Instability is defined elsewhere in the book as increased abnormal movement, and this is illustrated by x-rays purporting to show abnormal rotations and various types of abnormal tilt. He accepts that such appearances may be entirely painless, but in the patient with back pain they identify the causative level, and fusion is justified.

However, in a joint paper with Depuis in 1985 entitled “Radiological Diagnosis of Degenerative Lumbar instability” they write “A lumbar motion segment is considered unstable when it exhibits abnormal movements. The movement is abnormal in quality (abnormal coupling patterns) or in quality (abnormal increase of movement...) Pain is a signal of impending or actual tissue damage-and when present it indicates that a mechanical threshold has been reached or transgressed. Repeated transgressions will damage the stabilizing structures beyond physiological repair, thus putting abnormal demands on secondary restraints”.

Hence from being a method of identifying an abnormal degenerate disc, abnormal motion itself became the injurious agent.

In 1985 Pope and Panjabi in a paper entitled “Biomechanical definition of spinal instability” wrote “Instability is a mechanical entity and an unstable spine is one that is not in an optimal state of equilibrium. (...In the spine stability is affected by restraining structures that if damaged or lax will lead to altered equilibrium and thus instability. Instability is defined as a loss of stiffness”. Panjabi’s views were generally accepted by basic scientists interested in this field.

Subsequently Panjabi concluded that increased movement was not necessarily a feature of what he termed instability, but reduction in the neutral zone was. However, in a more recent paper he has abandoned the concept of instability altogether and ascribes chronic back pain as being caused by ligament sub-failure injuries leading to muscle control dysfunction.

However, throughout the period from the fifties to the nineties, the Panjabi view held sway, and the term instability evolved from being a useful term to denote a segment that was abnormal due to a degenerate disc, to a term denoting a diagnosis of an abnormal, (usually increased) pattern of movement with a translational component. The abnormal movement was thought to be the cause of the pain and clearly fusion or stopping movement was a logical treatment.

However, the inability to show that abnormal or increased movement was a feature peculiar to the painful degenerate disc, combined with the fact that despite more rigid fusions using pedicle fixation, the clinical results of fusion had not improved, was increasingly casting doubt on the concept of instability. The paper by Murata combining MRI examination with flexion and extension films in patients with back pain, showed that increased angular and translational movement was a feature of the normal or mildly degenerate disc, not of the markedly degenerate disc, where movements were reduced. In 1998 Kaigle et al. demonstrated that comparing patients with normal subjects there was always less movement present in the degenerate spine. It was therefore generally accepted that the effect of disc degeneration was to reduce movement not to increase it, as the term “instability” would imply. It may be argued that, unfortunately, this reduction of movement is associated with abnormal patterns of movement, and this is the meaning of “instability”. However despite considerable efforts over many years, using flexion/extension films, no clear relationship has been established between pain and such abnormal movements. In other words, patients with degenerative disc disease may exhibit abnormal patterns of movement yet have no pain.

By the mid-nineties, instability was still the term used to describe the disorder that we treated by fusion, but the failure to improve results by the introduction of pedicle fixation, caused many surgeons to question the concept of instability, but surgeons were all aware that fusion although unpredictable in terms of clinical result, was the best surgical treatment for chronic low back pain. It was well recognized that clinical success was unrelated to the success of the fusion, pseudarthrosis was as common amongst successful patients as in those who had failed. Was there anything else that a fusion did to the intervertebral disc unrelated to the fact that it stopped movement? (pgs. 619-623)

Mulholland (2008) concluded with a powerful statement that perhaps sums up why chiropractic realizes significant result when treating post-surgical cases.

Abnormal movement of a degenerated segment may be associated with back pain but is not causative. The concept of instability as a cause of back pain is a myth. The clinical results of any procedure that allows abnormal disc loading to continue are unpredictable. (pg. 624)

To underscore the point of fusion being a failed surgical paradigm in many patients, Gudavalli, Olding, Joachim, & Cox (2016) reported,

Surgical decompression of the lumbar spine in older patients had a 24% reoperation rate, and a 20-fold increase in lumbar surgical fusion rates among Medicare enrollees is reported. Lumbar cage fusion rates increased from 3.6% in 1996 to 58% in 2001, and the result was increased complication risk without improved disability or reoperation rates. Adjacent segment degenerative changes and instability at the level immediately above single-segment fusion with clinical deterioration are shown in up to 90% of the cases. The incidence of radiographic adjacent segment disease following fusion has been reported to be as high as 50% in the cervical spine and 70% in the lumbar spine at 10 years. However, the incidence of clinically relevant symptomatic adjacent segment disease is quite lower, estimated at 25% in the cervical spine and 36% in the lumbar spine at 10 years.

 

Comparing surgery with nonsurgical treatment for back and radicular pain shows that intensive rehabilitation is more effective than fusion surgery, and nonsurgical treatment of low back and radicular pain patients is reported to reduce lumbar disk surgery by approximately two-thirds. Chronic low back pain in 349 patients aged 18-55 years found no evidence that surgery was any more beneficial than intensive rehabilitation. A study of 600 single-operated low back patients showed that 71% did not return to work 4 years after surgery, and 400 multiple-operated backs showed that 95% did not return to work 4 years later. (pg. 124)

 

Gudavalli, Olding, Joachim, & Cox (2016) went on to report what has been found clinically effective in both pre and post-operative cases, "Treating lumbar disk herniation and spinal stenosis patients successfully with conservative care is documented. Chiropractic manipulation prior to spine surgery is appropriate. Previous reports of the biomechanical changes in the spine when CTFD (Cox technique, flexion-traction) spinal manipulation is applied include decreased intradiscal pressure; intervertebral disk foraminal area increase; increased intervertebral disk space height; and physiological range of motion of the facet joint." (pg. 124)

 

Regarding post-surgical care, Gudavalli, Olding, Joachim, & Cox (2016) concluded,

 

81% of the (post-surgical chiropractic) patients showed greater than 50% reduction in pain levels at the end of the last treatment. At 24-month follow-up, 78.6% had continued pain relief of greater than 50%. (pg. 121)

 

Although one of the goals of chiropractic care is pain relief, there are still the underlying biomechanical pathologies to consider that are concurrently treated while under chiropractic care. The more pressing issue in the post-surgical cases are “could these surgeries been avoided” in the first place with correcting the underlying biomechanical pathologies prior to surgery This underscores the overwhelming need for chiropractic as Primary Spine Care providers being the first treatment option. It goes back to the adage “drugless first, drugs seconds and surgery last.” It’s just common sense and chiropractic has been verified in numerous outcome studies proven to be the most effective 1st treatment option for spine.

 

 

References:

 

  1. Park, K. B., Shin, J. S., Lee, J., Lee, Y. J., Kim, M. R., Lee, J. H., ... & Ha, I. H. (2017). Minimum clinically important difference and substantial clinical benefit in pain, functional, and quality of life scales in failed back surgery syndrome patients. Spine42(8), E474-E481.
  2. Vleggeert-Lankamp, C. L., Arts, M. P., Jacobs, W. C., & Peul, W. C. (2013). Failed back (surgery) syndrome: time for a paradigm shift. British journal of pain7(1), 48-55.
  3. El-Badawy, M. A., & El Mikkawy, D. M. (2016). Sympathetic dysfunction in patients with chronic low back pain and failed back surgery syndrome. The Clinical journal of pain32(3), 226-231.
  4. Mulholland, R. C. (2008). The myth of lumbar instability: the importance of abnormal loading as a cause of low back pain. European spine journal17(5), 619-
  5. Gudavalli, M. R., Olding, K., Joachim, G., & Cox, J. M. (2016). Chiropractic distraction spinal manipulation on postsurgical continued low back and radicular pain patients: a retrospective case series. Journal of chiropractic medicine15(2), 121-128.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic’s Role in Decreasing Premature Death with Associated Back Pain

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature      

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported in the Feb. 13 issue of The Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including more depression and physical limitations. MD Lynx on Family Medicine reported “Nearly four million people in Australia suffer from low back pain and the total cost of treatment exceeds $1 billion a year.(https://www.mdlinx.com/family-medicine/top-medical-news/article/2017/03/08/7076443?utm_source=in-house&utm_medium=message&utm_campaign=mh-fm-march17)

 

When we consider mortality and the causes, most only attribute causality to the last diagnosis or pathology associated with the immediate cause of death. In recent literature, there have been studies studying the effects of long-term pain and all-causes of death inclusive of cancers and cardiovascular issues and are now considering these co-morbidities, rather than “stand-alone causes.”  

 

Docking et. Al (2015) reported:

 “This study confirmed previous findings regarding the relationship between pain and excess mortality. Further, we have shown that among older adults, this association is specific to disabling pain and to woman. Clinicians should be aware not only of the short-term implications of disabling back pain, but also the long-term effects.” (pg. 466)

 

 

The Family Medicine, MD Lynx reported on March 8, 2017:

New research from the Faculty of Health Sciences finds that older people with back pain have a 13 per cent higher chance of dying prematurely. The 600,000 older Australians who suffer from back pain have a 13 per cent increased risk of dying from any cause, University of Sydney research has found. Published in the European Journal of Pain, the study of 4390 Danish twins aged more than 70 years investigated whether spinal pain increased the rate of all–cause and disease–specific cardiovascular mortalityOur study found that compared to those without spinal pain, a person with spinal pain has a 13 per cent higher chance of dying every year. This is a significant finding as many people think that back pain is not life–threatening,” said senior author Associate Professor Paulo Ferreira, physiotherapy researcher from the University’s Faculty of Health Sciences.

 

The Family Medicine, MD Lynx also reported on March 8, 2017:

 “Medications are mostly ineffective, surgery usually does not offer a good outcome.”

 

It was reported byShaheed, Mahar, Williams, and McLachlin(2014) that out of the 4,336 studies they identified,concluded that,

“None of the trials evaluating [medical] advice or bed rest reported statistically and clinically important effects at any time point…The effects of advice on disability are similar to those for pain, with pooled results showing no clinical significant effect for the short and long-terms” (Shaheed, 2014, p. 5). “Pooled results from 2 studies on bed rest showed a statistically significant negative effect of bed rest in the immediate term…” (Shaheed et al., 2014,p. 10).

 

Shaheed et al. (2014) continued

 “There is no convincing evidence of effectiveness for any intervention available [with] OTC (over the counter drugs) or advice in the management of acute low back pain” (p. 11). The authors did report, “In the intermediate term, results from one of the studies involving referral to an allied HCP [health care provider] and reinforcement of key messages at follow-up visits showed significant effects in the intermediate and long-terms” (Shaheed et al., 2014, p. 12).

 

A 2005 study by DeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms. This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications. The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back-pain patients, chiropractic has already helped 87% of the same population.

 

In a study by Leeman, Peterson, Schmid, Anklin, and Humphrys(2014), there is further successful evidence of the effects of mechanical back pain, both acute and chronic pain with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients. In this study, the acute onset patient (the patient’s pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Again, this is an environment where research has concluded that medicine has poor choices based upon outcomes for what they label “nonspecific low back pain.” The results indicate that chiropractic has defined this “nonspecific lesion” as a “bio-neuro-mechanical lesion” also known as the chiropractic vertebral subluxation and the evidence outlined on these pages, combined with the ever-growing body of outcome studies verify that medicine can reverse this epidemic by considering chiropractors as “primary spine care providers” or the first option for referral for everything spine short of fracture, tumor or infection.

 

The research is starting to show the far “reaching effects of chronic low back pain and the evidence has supported that chiropractic must take a lead role in the management of this population of patients. Based upon the evidence, anything short of that is a public health risk.

  

References:

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from:http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3.  Is Back Pain Killing Us? (2017) Retrieved from: https://www.mdlinx.com/family-medicine/top-medical-news/article/2017/03/08/7076443?utm_source=in-house&utm_medium=message&utm_campaign=mh-fm-march17
  4. Docking, R. E., Fleming, J., Brayne, C., Zhao, J., Macfarlane, G. J., & Jones, G. T. (2015). The relationship between back pain and mortality in older adults varies with disability and gender: Results from the Cambridge City over75s Cohort (CC75C) study.European Journal of Pain,19(4), 466-472.
  5. Abdel Shaheed, C., Mahar, C. G., Williams, K. A., & McLachlin, A. J. (2014). Interventions available over the counter and advice for acute low back pain: Systematic review and meta-analysis. The Journal of Pain,15(1), 2-15.
  6. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study. Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  7. Leeman, S., Peterson, C., Schmid, C., Anklin, B., Humphrys, K. (2014). Outcomes of acute and chronic patients with magnetic resonance imaging-confirmed symptomatic lumbar disc herniations receiving high-velocity, low-amplitude, spinal manipulative therapy: A prospective observational cohort study with one year follow up. Journal (3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Spinal Fusion vs. Chiropractic for Mechanical Spine Pain

 

By. Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

A report on the scientific literature

 

As Chien and Bajwa (2008) pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

Mulholland reported (2008)

The cause and hence the best treatment of “mechanical” low back pain remains unsolved, despite nearly a century of endeavour. It is now generally accepted that some form of failure of the intervertebral disc is central to causation. In the latter half of the twentieth century, failure of the disc leading to abnormal movement, popularly called instability, legitimised the use of fusion as treatment. However, the unpredictable results of fusion, which did not improve despite progressively more rigid methods of fusion cast doubts on the concept that back pain was movement related and that stopping movement was central to its treatment. (Pg. 619)

 

The only reason for fusion appeared to be that, other treatments had failed, that it was reasonable from the psychological viewpoint, and that instability was present. Instability is defined elsewhere in the book as increased abnormal movement, and this is illustrated by x-rays purporting to show abnormal rotations and various types of abnormal tilt. He accepts that such appearances may be entirely painless, but in the patient with back pain they identify the causative level, and fusion is justified. (Pg. 620)

However, whilst that fusion may be very effective in stopping movement, it was deficient in relation to load transfer. (pg. 623)

 

The reason load transfer is critical to normal spinal biomechanics (function) is one of remodelling and the prevention of premature and unnecessary advanced arthritic changes. Based upon Wolff’s Law, with abnormal load, the entire joint will remodel in the body’s innate goal of creating homeostasis from a structural perspective.

 

 

In support of the above consideration, Mulholland concluded:

Abnormal movement of a degenerated segment may be associated with back pain but is not causative. The concept of instability as a cause of back pain is a myth. The clinical results of any procedure that allows abnormal disc loading to continue are unpredictable.

If it is accepted that load transfer disturbance is the central issue in mechanical back pain, then treatment can be directed to remedy this. Fusion will only do this if it reliably takes over the loading function of the disc. Movement preserving procedures such as “flexible stabilization” or an artificial disc are compatible with preserving motion but with an artificial disc bony integration between plate and vertebrae would appear to be essential, not just to stop movement, but to transfer load normally. (pg. 624)

 

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbert in 2010 that approximately 250,000 patients annually undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc (mechanical spine) issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for mechanical spine pathology, a more recent study by Leemann et al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study, the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Although the literature clearly indicates chiropractic as a superior choice for mechanical back pain for both disability and pain indicating function has normalized and that spinal fusion creates permanent abnormal load transfers leading to a higher risk of premature arthritis and spinal biomechanical failures, the consideration that was omitted in Mulholland’s paper was that of aberrant neurological sequella. The arbiter for surgery vs. chiropractic care that should be strongly considered is where the delay in surgery will possibly cause permanent neurological damage.

 

Clinically, regardless of the mechanical failure, (including, but not limited to disc extrusions both migrated and sequestered) and/or the presentation of exquisite pain, should the patient present with intact motor and sensory function upon examination, there is less consideration of adverse issues developing from chiropractic care that will take time in the rehabilitation process. However, if there is significant motor and/or sensory loss indicating compression or significant abutment of the cord or root, then delaying surgery can increase the risk of creating long-term neurological damage. In either scenario, while managing these types of patients, the chiropractor should consider co-managing with a spine surgeon who is versed in chiropractic care and contemporary literature that has objectified both treatment outcomes.

 

References:

  1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411
  2. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences,28(6) http://www.jneurosci.org/content/28/6/1398.full
  3. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.
  4. Mulholland R. (2008) The myth of lumbar instability: the importance of abnormal loading as a cause of low back pain, European Spine Journal 17 (5) 619-625
  5. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiskectomy for sciatica? A prospective randomized clinical study. . Journal of Manipulative and Physiological Therapeutics, 33(8), 576-584.
  6. Leeman S., Peterson C., Schmid C., Anklin B., Humphrys K. (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging Confirmed Symptomatic Lumbar Disc Herniations Receiving High Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study with One Year Follow Up, Journal(3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic vs. Medicine:

Who is More Cost Effective

& Renders Better Outcomes for Spine?

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

When we consider mechanical spine issues, we need to consider problems exclusive of fracture, tumor or infection. According to Houweling Et. Al. (2015) back pain effects 43% of the population over the course of a year. In addition, 33% of that group reported that their symptoms led to reduced productivity at work. In Switzerland, this accounted for 3% of their gross domestic products and equates to $14 Billion in US dollars. Chiropractic’s forte` and focus historically has been mechanical spine issues and when considering who the first provider that should be consulted, one needs to examine the scientific evidence based upon outcomes so that rhetoric has no place in utilization and the facts control the argument and direction of the patient.

Simply put, where should a patient go first because it has been proven conclusively that it is the best place to get better. From an insurance carrier and legislative perspective, the question goes one step further and examines the cost of care and which is the best solution in a cost-effective care-path realizing that often the government is the insurer or risk taker and even private carriers have a fiduciary responsibility to their stockholders to ensure a profitable return, while offering the best possible solutions for their insureds.  

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

Houweling Et. Al (2015) concluded “Patients who initially consulted with MDs were significantly less likely to be satisfied with the care received and the results of care compared with those who initially consulted DCs” (p. 480) and Adjusted mean costs per patient were significantly lower in patients initiating care with DCs compared with those initiating care with MDs. (p.480) “The findings of this study pertaining to patient satisfaction were in line with previous research comparing chiropractic care to medical care for back pain, which found that chiropractic patients are typically more satisfied with the services received than medical patients.” (p.481)

Houweling Et. Al (2015) continued “Mean total spinal, hip, and shoulder pain-related health care costs per patient during the 4-month study period were approximately 40% lower in patients initially consulting DCs compared with those initially consulting MDs. The reason for this difference was a lower use of health care services other than first-contact care in patients initially consulting DCs compared with those initially consulting MDs. Previous observational studies comparing medical and chiropractic care in terms of health care costs per patient have shown opposing results. Two studies conducted in the United States found that patients with low back pain treated in chiropractic clinics incurred higher costs than patients treated in medical clinics. One possible reason for these opposing findings is that differences were brought about by the methods of determining costs. In the studies conducted in the United States, costs were determined by chart audit, whereas in the present study, cost determinations were based on an insurance database review of all health care services used for the conditions investigated including the cost of visits to other health care providers.” Pg. 481

Perhaps the most telling point of Houweling Et. Al (2015) results were “Restrictive models of care in which patients are required to contact a medical provider before consulting a chiropractic provider may be counterproductive for patients experiencing the musculoskeletal conditions investigated and possibly others. In addition to potentially reducing health care costs, direct access to chiropractic care may ease the workload on MDs, particularly in areas with poor medical coverage and hence enabling them to focus on complex cases. The minority of patients with complex health problems initially consulting a chiropractic provider would be referred to, or co-managed with, a medical provider to provide optimal care. (p.481)

The above model not only suggests, but verifies that chiropractic should be the first choice or the primary spine care provider freeing up an already overburdened medical primary care provider’s office where they are not qualified to manage mechanical spine issues as reported above. This also helps resolve some of the issues in more rural regions where there is a shortage of primary care medical providers and positions the public to realize better outcomes and serves the insurers by ensuring lower costs.

References:

  1. Houweling, T, Braga A., Hausheer T., Vogelsang M., Peterson C., Humphreys K. (2015) First-Contact Care with a Medical vs. Chiropractic Provider After Consultation with a Swiss Telemedicine Provider: Comparison of Outcomes, Patient Satisfaction, and Health Care Costs in Spinal, Hip, and Shoulder Pain Patients, Journal of Manipulative and Physiologic Therapeutics, 38(7), 477-483
  2. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  3. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic, Chronic Back Pain and Brain Shrinkage:

 

A better understanding of Alzheimer’s, Dementia, Schizophrenia, Depression and Cognitive Disorders and Chiropractic’s Role

 

A Review of the Mechanisms

 

A report on the scientific literature 


By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

Frank Zolli DC, EdD

 

 

Reference: Studin M., Owens W., Zolli F., (2015) Chiropractic, Chronic Back Pain and Brain Shrinkage:A better understanding of Alzheimer’s, Dementia, Schizophrenia, Depression and Cognitive Disorders and Chiropractic’s Role, A Literature Review of the Mechanisms, The American Chiropractor, 37(10) 36-38, 4042, 44-45

 

Since its inception in 1895, Chiropractic has been focused on the spine and its role in the total health and function of the human body.  Throughout its history, the profession has moved from a “bone on nerve” model to a “biomechanical/functional” model however as we evolve (through scientific findings) in our understanding of the true nature of the chiropractic principles, we now conclusively know that chiropractic results are based on the central nervous system and the detrimental role of spinal dysfuntion in the maintenance of homeostasis and “dis-ease” in the human body.  This article bridges the gap between the foundational chiropractic principles taught by the Palmers and their predecessors and today’s breakthrough findings and the correlation between unchecked spinal dysfunction AKA chronic spine pain and its effect on the brain. 

 

 

Peterson ET. AL. (2012) reported, “The … prevalence of low back pain is stated to be between 15% and 30%, the 1-year period prevalence between 15% and 45%, and a life-time prevalence of 50% to 80%” (pg. 525). While acute pain is a normal short-lived unpleasant sensation triggered in the nervous system to alert you to possible injury with a reflexive desire to avoid additional injury, chronic pain is different. Chronic pain persists and fundamentally changes the patient’s interaction with their environment. In chronic pain it is well documented that aberrant signals keep firing in the nervous system for weeks, months, even years.1 Baliki Et. AL. (2008) stated “Pain is considered chronic when it lasts longer than 6 months after the healing of the original injury. Chronic pain patients suffer from more than pain, they experience depression, anxiety, sleep disturbances and decision making abnormalities that also significantly diminish their quality of life” (pg. 1398). Chronic pain patients also have shown to have changes in brain function in sufferers with Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder giving further insight into disease states. In addition, chronic pain has a cause and effect on the morphology of the spinal cord and the brain in particular resulting in a process termed “linear shrinkage”, which has been suggested to cause ancillary negative neurological sequella.  

 

Apkarian Et. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) Apkarian Et. AL. (2011) reported “Clinically, the most relevant conditions in which human brain imaging can have a substantial impact are chronic conditions, as they remain most poorly understood and minimally treatable by existing (author’s note: medical) therapies” (pg. S53). So in essence what these authors are stating is although many people suffer from chronic spine pain, very few of them are actually diagnosed with a “medical condition” AKA an “anatomical” lesion.  The chiropractic profession has long professed the lesion is actually functional and based on aberrant spinal biomechanics [Subluxation]. 

 

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal care paths with resultant negative sequella of chronic back pain.  Alkarian’s conclusion was querying allopathic doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi ET. Al. (2005) reported regarding medical providers, “(92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (pg. 167).

 

Day Et. Al. (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine (pg. 452). Schmale (2005) reported “Incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (pg. 251).  

 

With continued evidence of lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical [Subluxation] orientation, the question becomes which profession has the educational basis, training and clinical competence to manage these cases?  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic according to the American Chiropractic Association is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. So important to practice are these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education requires a curriculum which enables students to be “proficient in neuromusculoskeletal evaluation, treatment and management.” In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internship.

 

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral education as referenced above.

 

Now that we have a general idea of why current musculoskeletal and spine care paths are failing, let’s examine what the negative effects are with a focus on what happens to the central nervous system when a patient is suffering from chronic pain.  The following paragraphs describe what happens to the brain as a result of chronic pain and then offers solutions based upon evidenced based studies.

 

Chronic Pain Affecting Brain Activity at Rest

 

Baliki ET. Al (2008) reported “Recent studies have demonstrated that chronic pain harms cortical areas unrelated to pain, long-term pain alters the functional connectivity of cortical regions known to be active at rest, i.e., the components of the “default mode network” (DMN). This DMN is marked by balanced positive and negative correlations between activity in component brain regions. In several disorders, however this balance is disrupted. Studying with fMRI [functional MRI] a group of chronic back pain patients and healthy controls while executing a simple visual attention task, we discovered that chronic back pain patients, despite performing the task equally well as controls, displayed reduced deactivation in several key default mode network regions. These findings demonstrate that chronic pain has a widespread impact on overall brain function, and suggest that disruptions of the default mode network may underlie the cognitive and behavioral impairments accompanying chronic pain.” (pg. 1398)

 

“The existence of a resting state in which the brain remained active in an organized manner, is called the ‘default mode of brain function. The regions exhibiting a decrease in activity during task performance are the component members of the “default-mode network” (DMN), which in concerted action maintain the brain resting state. Recent studies have already demonstrated that the brain default mode network is disrupted in autism, Alzheimer’ disease, depression, schizophrenia and attention deficit hyperactivity disorder, suggesting that the study of brain resting activity can be useful to understand disease states as well as potentially provide diagnostic information.”  (pg. 1398)  This is important since for the first time we are starting to see a published correlation between spinal function, chronic pain and central nervous system changes.  This is what our founders have observed yet were unable to prove.

 

“Thus, the alterations in the patient’s brain at ‘rest’ can result in a different default mode network organization. In turn, potential changes in the default-mode network activity could be related to symptoms (other than pain) commonly exhibited by chronic pain patients, including depression and anxiety, sleep disturbances, and decision-making abnormalities, which also significantly diminish their quality of life… chronic pain patients display a dramatic alteration in several key default-mode network regions, suggesting that chronic pain has a widespread impact on overall brain function” (pg. 1398).  This information is pointing to the fact that a doctor of chiropractic should be involved in the triage and treatment of these patients and part of a long term spinal care program. 

 

Baliki ET. Al (2008) continued “Consistent with extensive earlier work examining visuospatial attention tasks, dominant activations were located in posterior parietal and lateral prefrontal cortices, whereas deactivations occurred mainly within Pre-Frontal Cortex and Posterior Cingulate/Cuneate Cortexes. Although activations in chronic back pain patients’ and controls’ brains were similar, chronic back pain patients exhibited significantly less deactivations than healthy subjects in Pre-Frontal Cortex, amygdala, and Posterior Cingulate/Cuneate Cortexes.  The focus was on identifying differences in the way chronic back pain patients’ brains process information not related to pain. This is the first study demonstrating that chronic back pain patients exhibit severe alterations in the functional connectivity between brain regions implicated in the default mode network. It seems that enduring pain for a long time affects brain function in response to even minimally demanding attention tasks completely unrelated to pain. Furthermore, the fact that the observed task performance, compared with healthy subjects, is unaffected, whereas the brain activity is dramatically different, raises the question of how other behaviors are impaired by the altered brain activity” (pg. 1399).

 

“However, the disruption of functional connectivity observed here with increased chronic back pain duration may be related to the earlier observation of brain atrophy increasing with pain duration also in chronic back pain patients. Patient’s exhibit increased pre-frontal cortex activity in relation to spontaneous pain, in addition to dorsolateral prefrontal cortex atrophy. Therefore, the decreased deactivations described here may be related to the dorsolateral pre-frontal cortex /pre-frontal cortex mutual inhibitory interactions perturbed with time. If that is the case, it will support the idea of a plastic, time-dependent, reorganization of the brain as patients continue to suffer from chronic back pain.

 

Mechanistically, the early stages of this cortical reorganization may be driven by peripheral and spinal cord events, such as those that have been documented in animal models of chronic pain, whereas later events may be related to coping strategies necessary for living with unrelenting pain. It is important to recognize that transient but repetitive functional alterations can lead to more permanent changes. Accordingly, long term interference with normal activity may eventually initiate plastic changes that could alter irreversibly the stability and subsequently the conformation of the resting state networks” (pg. 1401).

 

 

Brain Region

Function

Cingulate Cortex

Emotions, learning, motivation, memory

Insular Cortex

Consciousness, homeostasis, perception, motor control, self-awareness, cognitive function

Motor Cortex

Voluntary movements

Amygdala Cortex

Memory, decision making, emotional reactions

Somatosensory Cortex

Proprio and mechano-reception, touch, temperature, pain of the skin, epithelial, skeletal muscle, bones, joints, internal organs and cardiovascular systems

Periaqueductal Gray

Ascending and descending spinothalamtic tracts carrying pain and temperature fibers

 

 

 

 

 

 

 

 

 

 

 

 

THALAMUS

 

 

 

Chronic Pain Causing Brain “Shrinkage”

 

Apkarian ET. Al (2004) reported “Chronic back pain patients were divided into neuropathic, exhibiting pain because of sciatic nerve damage, and non-neuropathic groups. Patients with chronic back pain showed 5-11% less neocortical gray matter volume than control subjects. The magnitude of this decrease is equivalent to the gray matter volume lost in 10-20 years of normal aging. The decreased volume was related to pain duration, indicating a 1.3 cm3loss of gray matter for every year of chronic pain. Gray matter density was reduced in bilateral dorsolateral prefrontal cortex and right thalamus and was strongly related to pain characteristics in a pattern distinct for neuropathic and non-neuropathic chronic back pain. Our results imply that chronic back pain is accompanied by brain atrophy and suggest that the pathophysiology of chronic pain includes thalamocortical processes.

 

It is assumed that the cerebral cortex passively reflects spinal changes and reverts to its normal state after cessation of chronic pain. Our studies show that chronic back pain (sustained for >6 months) is accompanied by abnormal brain chemistry, mainly a reduction in theN-acetyl-aspartate-creatine ratio in the prefrontal cortex, implying neuronal loss or dysfunction in this region and reduced cognitive abilities on a task that implies abnormal prefrontal processing” (pg. 10410).

 

Apkarian ET. Al (2004) continued “At the whole-brain level, this reduction is related to pain duration, regionally depends on multiple pain-related characteristics, and is more severe in the neuropathic subtype. Therefore, these data present strong evidence that the pathophysiology of chronic pain includes cortical processes, and the observed changes likely constitute the physical substrate of the cognitive and behavioral properties of chronic pain” (pg. 10411).

 

“Thus, regional gray matter changes are strongly and specifically related to pain characteristics, and this pattern is opposite for neuropathic compared with non-neuropathic types. This dissociation is consistent with extensive clinical data showing that neuropathic pain conditions are more debilitating and have a stronger negative affect, which may be directly attributable to the larger decrease in gray matter density that we observe in the dorso-lateral pre-frontal cortex (DLPFC) of neuropathic chronic back pain patients.  Moreover, only 18% of whole-brain gray matter variance could be explained by pain duration. Therefore, a large portion of the whole-brain atrophy in chronic back pain cannot be accounted for by the measured pain characteristics, implying that there may be genetic and experiential predispositions contributing to the observed atrophy. In the DLPFC, a larger proportion of the variance could be explained by pain characteristics (40% for neuropathic chronic back pain; 80%for non- neuropathic chronic back pain), implying a tighter relationship between regional brain atrophy and perceived pain. Therefore, we suggest that the pattern of brain atrophy is directly related to the perceptual and behavioral properties of neuropathic chronic back pain.”

 

The observed regional pattern of atrophy is distinct from that seen in chronic depression or anxiety and shows a minimal relationship with anxiety and depression traits. Thus, it seems to be specific to chronic pain, especially because the regions showing atrophy, the thalamus and DLPFC, participate in pain perception. The DLPFC is activated in acute pain, with responses that do not code stimulus intensity. Recent evidence suggests that the DLPFC exerts “top-down” inhibition on orbitofrontal activity, limiting the magnitude of perceived pain. Thus, DLPFC atrophy may lead to a disruption of its control over orbitofrontal activity, which in turn is critical in the perception of negative affect in general and particularly in pain states. Thalamic atrophy in chronic back pain is important, because it is a major source of nociceptive inputs to the cortex and damage to this region may be a reason for the generalized sensory abnormalities commonly associated with chronic pain” (pg. 10413).

 

“The dorsal anterior cingulate is shown to be specifically involved in pain affect in normal subjects and exhibits decreased nociceptive signaling in various chronic pain states, which may again be caused by thalamic atrophy because the anterior thalamus is a primary input to the anterior cingulate. Therefore, we suggest that regional atrophy dictates the brain activity observed in chronic pain, and it may explain the transition from acute to chronic pain by shifting brain activity related to pain affect away from the anterior cingulate to orbitofrontal cortex.”

 

“It is possible that some of the observed decreased gray matter reflects tissue shrinkage [changes in extracellular space and microvascular volume may cause tissue shrinkage without substantially impacting neuronal properties], implying that proper treatment would reverse this portion of the decreased brain gray matter. The atrophy may be also attributable to more irreversible processes, such as neurodegeneration, which we favor because the main brain region involved (the DLPFC) also exhibits decreasedN-acetyl-aspartate, and decreasedN-acetyl-aspartate has been observed in most neurodegenerative conditions. Recent evidence also suggests that after nerve injury, some components of pain behavior are a consequence of hyperactivity of spinal cord microglia, and a histological study has shown a reduction in glial numbers in the cortex in major depressive disorder and bipolar disorder” (pg. 10414).

This article suggests that there is a reversible component in brain atrophy with the resolution of the chronic back pain, with strong evidence that there are some tissue structures that will be permanently damaged should the chronic pain go beyond the defined 6 months.  Clearly there are many different professions that handle the anatomical components of spine pain such as fracture, infection, disc herniation or tumor.  There is only one profession that has the education and training to treat the aberrant spinal biomechanics; chiropractic.  Since chiropractors are trained in treating/managing/triaging the anatomical lesions while also being the best suited to treat the biomechanical component, the evidence verifies that  the first contact for spine pain be a doctor of chiropractic who is also trained in differential diagnosis of underlying pathology. .

 

Brain Regions Effected

 

Apkarian ET. AL (2011) reported “The surprise was that the brain region best reflecting high magnitude of back pain was localized to the medial prefrontal cortex, extending into anterior cingulate cortex, a region not anticipated by acute pain studies. Additionally, brain areas observed for acute pain, like portions of the insula and mid- anterior cingulate cortex were only active transiently and only when the back pain magnitude was on the increase. These results are exciting because, for the first time, we are able to observe brain activity reflecting the subjective perception of the pain that chronic back pain patients come to the clinic to complain. We interpret the transient activity as a nociceptive signal from the periphery, which then is converted into a sustained emotional suffering signal in medial prefrontal cortex (pg. S54).

 

“Thus we can assert that, at least in this group of chronic pain patients, different brain areas encode the perceived magnitude for distinct types of pain. The prevalent expectation for brain activity in chronic pain is a sustained or enhanced activation of the brain areas already identified for acute pain. This view is partly implied by the chronic pain definition and by notions of specificity theory or labeled line theory of pain (where supraspinal organization and representation of pain is assumed to be through fixed and immutable routes). This is exactly what we donotsee. Instead these results imply that functional anatomy or physiology or some combination of both have changed in the brain of chronic back pain patients. It is also important to remember that the close relationships between fundamental properties of back pain and activity in medial prefrontal cortex and insula are correlational, and that both medial prefrontal cortex and insula respond to a long list of cognitive and emotional states (pg. S55). The morphological studies show that the brain structure undergoes changes at multiple spatial and temporal scales, which are for the most part specific to the type of chronic pain studied. That some of these changes are reversible by cessation of chronic pain speaks to the specificity of the processes and also demonstrate that chronic pain may in fact by used as a unique tool with which the dynamics of brain plasticity can be studied at multiple spatial and temporal scales” (pg. S56).

 

Chiropractic as a Solution for Chronic Back Pain

 

 

Peterson ET. AL. (2012) reported “investigate outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment. In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes. Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (pg. 525). “At 3 months, 69% of patients with chronic pain stated that they were either much better or better. This is unlikely to be due to the natural history of LBP because these patients have already passed the period when natural history occurs “(pg. 531).  A study by Tamcan et al (2010) was the only population based study of the so called “natural history” of lower back pain and the authors found the “natural history” of chronic lower back pain was not ending in resolution of symptoms but instead they documented patients moving “in and out” of a level of pain they could tolerate.   Based on the only population-based study of chronic lower back pain, the idea that the “natural history” of lower back pain ends with resolution of symptoms is a complete myth and one that is perpetuated by our present healthcare system.

 

 

Lawrence ET. AL (2008) reported “Existing research evidence regarding the usefulness of spinal adjusting… indicates the following, as much or more evidence exists for the use of SMT [spinal manipulation] to reduce symptoms and improve function in patients with chronic LBP as for use in acute and subacute LBP. The manual therapy group showed significantly greater improvements than did the exercise group for all outcomes. Results were consistent for both the short-term and the long-term” (pg. 670).

 

 

Dunn ET. AL. (2011) reported “The clinical outcomes achieved for this sample should be considered within the context of this veteran patient base, which is typically represented by older, white males with multiple comorbidities. A high percentage of overall service-connected disability was noted, with only a small percentage associated with the low back region. Considerable psychological comorbidity was found, with a high prevalence of PTSD (post-traumatic stress disorder) and depression diagnoses. PTSD and chronic pain tend to co-occur and may interact in a way that can negatively affect either disorder. A previous retrospective study of chiropractic management for neck and back pain demonstrated less improvement among those with PTSD. These points are significant because severe comorbidities and psychosocial factors lessen the likelihood of obtaining positive outcomes with conservative measures, including [chiropractic adjustments], for chronic low back pain. Mean percentages of clinical improvement exceeded the minimum clinically important difference, despite the levels of service-connected disability and comorbidity among this sample of veteran patients” (pg. 930). They went on to conclude that in spite of significant comorbidities that historically compromise positive results, 60.2% of patients met or exceeded the minimum clinically important difference for improvement (pg. 927).

 

Conclusion

 

Chronic pain as defined by that which has last for 6 months or longer which causes significant brain aberration in both morphology (size) and function.  The  literature suggests that this could be the precursor for many diseases as sequella of the human body’s natural reaction to prolonged pain.   Chronic back pain is one of the leading causes of chronic pain and medicine has little to no training or solutions as reported in the literature. Conversely, chiropractic has significant training and has been proven in “blinded” studies to have significant positive outcomes even in significantly adverse condition to help resolve chronic pain. As a result, the negative sequella on the brain of chronic pain, including shrinkage of the brain can be reversed through chiropractic care as the evidence has verified that once the chronic pain has resolved, the brain has the ability to return to its normal size and regain much function.

 

 

Although this evidence is strong, more research is needed and this further sets the foundation for understanding how chiropractic directly effects diseases in the human body. In addition, this also takes the chiropractic profession to the next level of understanding how and why a chiropractic adjustment works.  

 

 

References:

  1. National Institute of Neurological Disorders and Stroke, NINDS Chronic Pain Information Page (July 2015), retrieved from: http://www.ninds.nih.gov/disorders/chronic_pain/chronic_pain.htm
  2. Baliki N., Geha P., Apkarian A., Chialvo D., (2008) Beyond Feeling: Chronic Pain Hurts the Brain, disrupting the Default-Mode Network Dynamics, Journal of Neurosciences 28(6) 1398-1403
  3. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415
  4. Apkarian A., Hashmi J., Baliki M., (2011) Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain, Pain 152, S49-S54
  5. Raissi G., Mansoon K., Madani P., Rayegani S., (2006) Survey of General Practitioners’ attitudes Toward Physical Medicine and Rehabilitation, International Journal of Rehabilitation Research 26: 167-170
  6. Day C., Yeh A., Franko O., Ramirez M., Krupat E. (2007) Musculoskeletal Medicine: An Assessment of the Attitudes of Medical Students at Harvard Medical School, Academic Medicine 82: 452-457
  7. Schmale G. (2005) More Evidence of Educational Inadequacies in Musculoskeletal Medicine 437, 251-259
  8. Peterson C., Bolton J., Humphreys K., (2012) Predictors of Improvement in Patients With Acute and Chronic Low Back Pain Undergoing Chiropractic Treatment, Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533
  9. Lawrence, D., Meeker W., Branson R., Bronford G., Cates J., Haas M., Haneline M., Micozzi M., Updyke W., Mootz R., Triano J., Hawk C., (2008) chiropractic management of low back pain and low back-related leg complaints: a literature synthesis, Journal of Manipulative and Physiological Therapeutics, 31(9) 659-674
  10. Dunn A., Green B., Formolo L., Chicoine D. (2011) Retrospective case series of clinical outcomes associated with chiropractic management for veterans with low back pain, Journal of Rehabilitation Research & Development, 48(8) 927-934
  11. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain, 150(3), 451-457.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Brain Function

Back Pain: Who Should Be Seen First & WHY

Chiropractor vs. Medical Primary Care Doctor

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

Reference: Studin M., Owens W. (2015) Back Pain: Who Should Be Seen First & WHY, Chiropractor vs. Medical Primary Care Doctor, American Chiropractor 37 (9) 50, 52, 54, 56

 

 

 

As Chien and Bajwa(2008)pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

The problems that exist regarding chronic back pain are compounded by an unsuspecting public that historically, initially seeks care from their primary care medical providers who do not have strong grasps on mechanical back pain. According to Apkarian et al. (2004), back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made. In other words, virtually every time a patient goes to see his/her primary care doctor as a result of his/her chronic back pain, the doctor does not know the cause of the problem, yet treats an area that he/she is not equipped to diagnose.  

 

When we look at the human population on a larger scale and from a medical perspective, we see there is a deficit in spinal education with resultant negative sequellae of chronic back pain.  The above conclusion was drawn by querying allopathic (medical) doctors who have little to no training or experience in treating mechanical back pain, AKA spinal dysfunction of biomechanical origin, AKA chiropractic subluxation complex.  Raissi, Mansoon, Madani, and Rayegani (2006) reported regarding medical providers. Most respondents (92.2%) believed that musculoskeletal education had not been sufficient in general practitioner training courses. Of the respondents, 56.8% had visited at least one disabled patient during the previous month, while 11% had visited more than 10 in the same period, but 84.3% had not studied disabilities. Musculoskeletal physical examination was the most needed educational field cited by general practitioners” (Raissi et al., 2006, p. 167).

 

Day, Yeh, Franko, Ramirez, and Krupat (2007) reported that only 26% of fourth year Harvard medical students had a cognitive mastery of physical medicine.  Schmale (2005) reported, “…incoming interns at the University of Pennsylvania took an exam of musculoskeletal aptitude and competence, which was validated by a survey of more than 100 orthopaedic program chairpersons across the country. Eighty-two percent of students tested failed to show basic competency. Perhaps the poor knowledge base resulted from inadequate and disproportionately low numbers of hours devoted to musculoskeletal medicine education during the undergraduate medical school years. Less than 1⁄2 of 122 US medical schools require a preclinical course in musculoskeletal medicine, less than 1⁄4 require a clinical course, and nearly 1⁄2 (57/122) have no required preclinical or clinical course. In Canadian medical schools, just more than 2% of curricular time is spent on musculoskeletal medicine, despite the fact that approximately 20% of primary care practice is devoted to the care of patients with musculoskeletal problems. Various authors have described shortcomings in medical student training in fracture care, arthritis and rheumatology, and basic physical examination of the musculoskeletal system (p. 251). 

 

With continued evidence of a lack of musculoskeletal medicine and a subsequent deficiency of training in spine care, particularly of biomechanical (subluxation) orientation, the question becomes, “Which profession has the educational basis, training and clinical competence to manage these cases?”  Let’s take a closer look at chiropractic education as a comparison. 

 

Fundamental to the training of doctors of chiropractic is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. It is so important to practice these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be proficient in neuromusculoskeletal evaluation, treatment and management. In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. As a result, students are afforded the opportunity to practice utilizing this basic science information for many hours prior to beginning clinical services in their internships.

To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE). Part one of this series consists of six subjects, general anatomy, spinal anatomy, physiology, chemistry, pathology and microbiology. It is therefore mandatory for a chiropractor to know the structure and function of the human body as the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education. As a result, the doctor of chiropractic is expert in the same musculoskeletal genre that medical doctors are poorly trained in their doctoral educationas referenced above.

 

A 2005 study byDeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms.This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications.

 

The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back pain patients, chiropractic has already helped 87% of the same population. We also know that chiropractic is one of the safest treatments currently available in healthcare for spinal treatment and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie(2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(p. 5).

 

References:

 

1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411

2. Peterson, C. K., Bolton, J., & Humphreys, B. K. (2012). Predictors of improvement in patients with acute and chronic low back pain undergoing chiropractic treatment. Journal of Manipulative and Physiological Therapeutics, 35(7), 525-533.

3. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences, 28(6) http://www.jneurosci.org/content/28/6/1398.full

 4. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.

5. Raissi, G. R., Mansoon, K., Madani, P., & Rayegani, S. M. (2006). Survey of general practitioners’ attitudes toward physical medicine and rehabilitation. International Journal of Rehabilitation Research, 29(2), 167-170.

6. Day, C. S., Yeh, A. C., Franko, O., Ramirez, M., & Krupat, E. (2007). Musculoskeletal medicine: An assessment of the attitudes of medical students at Harvard Medical School. Academic Medicine, 82(5), 452-457.

7. Schmale, G. A. (2005). More evidence of educational inadequacies in musculoskeletal medicine. Clinical Orthopaedics and Related Research, 437, 251-259.

 8. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study.Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.

 9. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic Can Prevent Absenteeism in the Workplace from Chronic Pain

 

  • A Potential Savings of $140 - $159,000,000,000 (billion) in Unnecessary Health Care Expenditure to Federal and Private Insurers
  • A Potential Savings of $52 - $58,000,000,000 (billion) from Absenteeism and Lowered Productivity to the United States Economy

 

 

A report on the scientific literature 


 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

According to Cady (2014) over 100 million Americans experience chronic pain with common painful conditions including back pain, neck pain, headaches/migraines, and arthritis, in addition to other painful conditions such as diabetic peripheral neuropathy, etc...In a large study in 2010, 30.7% of over 27,000 U.S. respondents reported an experience of chronic, recurrent pain of at least a 6-month duration. Half of the respondents with chronic pain noted daily symptoms, with 32% characterizing their pain as severe (≥7 on a scale ranging from 0 to 10). Chronic pain has a broad impact on emotional well-being and health-related quality of life, sleep quality, and social/recreational function.

Peterson ET. AL. (2012) reported, “The … prevalence of low back pain is stated to be between 15% and 30%, the 1-year period prevalence between 15% and 45%, and a life-time prevalence of 50% to 80%” (pg. 525).  Apkarian Et. Al. (2004) reported that “Ten percent of adults suffer from severe chronic pain. Back problems constitute 25% of all disabling occupational injuries and are the fifth most common reason for visits to the clinic; in 85% of such conditions, no definitive diagnosis can be made.” (pg. 10410) The reference to no definitive diagnosis is reflective of allopathy, or in common terms, the medical community.

 

 

In contrast, Peterson ET. AL. (2012) reported “investigate outcomes and prognostic factors in patients with acute or chronic low back pain (LBP) undergoing chiropractic treatment. In chronic LBP, recent studies indicate that significant improvement is often fairly rapid, usually by the fourth visit, and that patients initially receiving treatment 3 to 4 times a week have better outcomes. Patients with chronic and acute back pain both reported good outcomes, and most patients with radiculopathy (neurogenic) also improved” (pg. 525). “At 3 months, 69% of patients with chronic pain stated that they were either much better or better. This is unlikely to be due to the natural history of low back pain because these patients have already passed the period when natural history occurs “(pg. 531).  As a note, this author has been caring for chronic back pain sufferers for 34 years and my personal observation is that 90%+ of all patients feel better and have significantly increased function in a short amount of time. However, for the purposes of this article, I will utilize the published 69%.  

 

Cady (2014) wrote “In addition to the pervasive personal suffering associated with this disease, chronic pain has a substantial negative financial impact on the economy. Direct office visits, diagnostic testing, hospital care, and pharmacy costs are only a portion of the picture, with combined medical and pharmacy costs averaging $5,000 annually per individual (Pizzi, 2005). Chronic pain results in a significant economic burden on the healthcare system, with estimated costs ranging from $560 to $635 billion 2010 dollars, more than the annual cost of other priority health conditions including cardiovascular disease, cancer, and diabetes (Gaskin & Richard, 2012). Moreover, the estimated annual costs of the workplace impact of pain range from $299 to $335 billion from absenteeism and reduced productivity (Gaskin & Richard, 2012).” (pg. 1-2)

 

We have already established that 10% of adults suffer from chronic pain and that back pain constitutes 25% of that population and chiropractic helps 69% of chronic sufferers. Therefore if 25% of all chronic pain is back pain and chiropractic helps 69%, then the numbers extrapolate as follows: 

 

Economic burden on the healthcare system:

$560-$635 billion x 25% (back pain) = $140-$159 billion

$140-$159 billion x 69% (chiropractic helps) = $97-$110,000,000,000 (billion)

 

Absenteeism and Reduced Productivity Costs

$299-$335 billion x 25% (back pain) = $75-$84 billion

$75-$84 billion x 69% (chiropractic helps) = $52-$58,000,000,000 (billion)

 

We also know that chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5).

 

Unfortunately, the likelihood that a medical provider in any subspecialty will encounter chronic pain and its complications will only increase in the future as the population advances in age and body mass. In addition, based upon the statistics there needs no extrapolation as to who should be the primary spine care provider or first option to treat chronic back pain or any mechanical back pain (no fracture, tumor or infection). We have verified that allopathy (medical doctors) not being able to conclude a diagnosis 85% of the time, where chiropractic has verified diagnosis and solutions 69% (or my 90% +) in verified scientific outcomes.

 

 

The conclusions are not an indictment against medicine, it is a conclusion based upon science to put billions back into our economy while first helping those in chronic pain with a “best outcome” solution.

 

 

References:

  1. Block, C. K. (2014). Examining neuropsychological sequelae of chronic pain and the effect of immediate-release oral opioid analgesics (Order No. 3591607). Available from ProQuest Dissertations & Theses Global. (1433965816). Retrieved from http://search.proquest.com/docview/1433965816?accountid=1416
  2. Peterson C., Bolton J., Humphreys K., (2012) Predictors of Improvement in Patients With Acute and Chronic Low Back Pain Undergoing Chiropractic Treatment, Journal of Manipulative and Physiological Therapeutics, 35(7) 525-533
  3. Apkarian V., Sosa Y., Sonty S., Levy R., Harden N., Parrish T., Gitelman D., (2004) Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density, The Journal of Neuroscience, 24(46) 10410-10415
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

The Journal of the American Medical Association Suggest a Link between Pregnant Woman – Back Pain – Tylenol Use & ADHD: Chiropractic Offers a Solution

 

A report on the scientific literature 


 

By Travis McKay DC,

William J Owens Jr DC DAAMLP CPC

Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Liew, Ritz, Rebordosa, Lee and Olsen (2014) reported that pregnant women, at some point during their pregnancies, may experience musculoskeletal pain, particularly in the lower back, pelvis and hips.  Since the symptoms are related to biomechanical changes associated with pregnancy, it is important to be able to offer relief while limiting potentially harmful side effects.   One of the most common ways to treat musculoskeletal pain in general and during pregnancy, in particular, is through over-the-counter (OTC) medications.  Most doctors and family members will recommend acetaminophen, more commonly known and marketed as Tylenol, as a pain reliever and as a safe choice for both mothers and their babies. However, Liew et al. (2014) reported, “Acetaminophen (paracetamol) is the most commonly used medication for pain and fever during pregnancy in many countries. Research data suggest that acetaminophen is a hormone disruptor, and abnormal hormonal exposures in pregnancy may influence fetal brain development” (p. 313).   

According to Liew et al. (2014):

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioral disorders worldwide, characterized by inattention, hyperactivity, increased impulsivity, and motivational/emotional dysregulation. Hyperkinetic disorder (HKD; International Statistical Classification of Diseases, 10th Revision) is a particularly severe form of ADHD (Diagnostic and Statistical Manual of Mental Disorders [Fourth Edition]). The etiology of HKD/ADHD is not well understood but both environmental and genetic factors are believed to contribute. (p. 313) 

The study reported that children whose mothers used acetaminophen during pregnancy were at higher risk for a diagnosis of hyperkinetic disorder, use of attention deficit hyperactivity disorder (ADHD) medications, and/or having ADHD like behaviors by age 7.  The study found that these outcomes were seen more in the mothers who used acetaminophen during more than one trimester of their pregnancies and that the more acetaminophen that was taken, the greater the likelihood that one of the previously mentioned conditions would be seen in their children.  The authors reported, “We observed an increased risk for ADHD-like behaviors in children at age 7 years with maternal acetaminophen use during pregnancy…as well as use in more than 1 pregnancy trimester, especially in later pregnancy, and a stepwise increase in risks with increasing frequency of use throughout pregnancy” (Liew et al., 2014, p. 318).

What does this mean for pregnant women?  If additional studies confirm the association between acetaminophen and hyperkinetic disorder and ADHD, what options are available for pregnant women who are suffering from spinal pain during pregnancy?  The answer lies in understanding other forms of pain management and non-medication based therapies which are already available to pregnant women.    According to Coronado et al. (2012), “The mechanism of SMT [spinal manipulation therapy] remains elusive, but SMT appears to modulate pain through both central [brain and spinal cord] and peripheral pathways [down the arms and legs]. Studies have investigated the effect of SMT using variable experimental pain modalities including chemical, electrical, mechanical, and thermal stimuli. SMT demonstrated a favorable effect over other interventions on pressure pain thresholds (PPT)” (p. 763).  This means that the chiropractic adjustment has a very specific influence on the body’s perception and management of pain. 

Since the most common reason for pregnancy-related spine and pelvic pain during pregnancy has to do with altered mechanics, a non-drug approach to reducing pain and increasing function should be considered as a first-line alternative to eliminate the possible connection between acetaminophen and ADHD. Chiropractic care offers a neuromuscular and spinal biomechanical approach that focuses on the underlying causes of a patient’s spinal-related pain.   

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration, particularly as a first line treatment. Whedon, Mackenzie, Phillips, and Lurie (2015) based a study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury in normal healthy tissues has been identified” (Whedon et al., 2015, p. 265).

Chiropractic should be considered as a first-line, safe choice for pregnant woman with back pain to avoid any potential side effects from all medications, when clinically indicated.

References:

1. Liew, Z., Ritz, B., Rebordosa, C., Lee, P. C., & Olsen, J. (2014). Acetaminophen use during pregnancy, behavioral problems, and hyperkinetic disorders. JAMA Pediatrics, 168(4), 313-320.

2. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. Journal of Electromyography and Kinesiology22(5), 752-767.

3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

           

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Back Pain:

Chiropractic vs. Medical Doctors

Who Get Better Results and Who is More Cost Effective?

 

Chiropractic Proves 300% more effective

Chiropractic Proves 50% More Cost Effective

A report on the scientific literature 


 

BY: Donald Capoferri DC, DAAMLP

William J. Owens DC, DAAMLP

Mark Studin DC, FASBE(C), DAAMLP, DAAPM

 

In 2010 a study of back pain patients insured by Blue Cross Blue Shield of Tennessee revealed patients receive nearly 3x better results at almost half the cost when consulting a chiropractor instead of a traditional medical doctor.

 

Statistics show that back pain, and more specifically lower back pain will affect 70-80% of all Americans.  Back pain is one of the top 10 most costly conditions treated in the United States.  Costs directly associated with examination and treatment are in excess $50 billion dollars per year.  Indirect cost of back pain include lost work day, reduced employee productivity and disability are $47 billion dollars.  That makes the total economic impact of lower back pain in excess of $97 billion dollars per year.

 

The study was conducted on 85,402 patients, all insured with Blue Cross Blue Shield of Tennessee.  This insurer was chosen because it provided equal access to both traditional medical and chiropractic care. The population of patients were diagnosed with the following conditions: Spinal disc disorders, Lower back pain, muscle spasms, joint mobility restrictions, Sacroiliac joint sprain/strain and lumbar spine sprain/strain.  The results of the study revealed those patients who initiated care with a chiropractor had a 61% “very satisfied response” when surveyed.  Those patient who initiated care with a medical doctor had a 27% “very satisfied response.” The patients who initiated care with a chiropractor incurred 40% less cost than those choosing traditional medical care.

 

There is a growing body of evidence indicating that chiropractic care is more effective and less costly than medical care for back pain.  In contrast to this and many other studies indicating the efficacy of chiropractic care for back pain, only 7% of U.S. back pain sufferers consult a chiropractor.  Using the data from this study insurers nationally would realize billions of dollar of savings if the population of back pain patients initiated care with a chiropractor first. 

 

Insurance companies that restrict access to chiropractic care at this juncture with statistical evidence, are paying more for care and delaying necessary, effective care for no apparent reason other than politics or prejudice. If all restrictions for chiropractic access were removed carriers would save money and offer a significant public health benefit. The statistics speak for themselves.

 

Reference:

Liliedahl R., Finch M., Axene D., Geertz C., (2010) Cost of Care for Common Back Pain Conditions Initiated with Chiropractic Doctor vs. Medical Doctor/Doctor of Osteopathy as First Physician:  Experience of One Tennessee-Based General Health Insure, Journal of Manipulative and Physiological Therapeutics 33 (9) pgs. 640-643

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems
Page 1 of 2

More Research