Case Report: Establishing the Efficacy for Trauma Trained Chiropractors as Primary Spine Care Physicians

Donald A. Capoferri, D.C., DAAMLP

Abstract: The objective of this case report is to explore the use of chiropractic and chiropractors as a primary spine care specialty and the efficacy of early referral to a properly trained and credentialed chiropractor. Diagnostic studies included physical examination, radiographic examinations, cervical, thoracic, and lumbar spine MRI studies and brain MRI study.  Treatments included non-surgical axial decompression and low-level laser treatments. Once a clinical examination and diagnosis was formed, a favorable prognosis was expected. With appropriate chiropractic management, the outcome proved excellent in pain reduction and had minimal effect on the numbness and weakness of the patient’s left upper and lower extremities.

Key Words: Disc herniation, syringomyelia, multiple sclerosis, disc bulge, demyelination.

Introduction: On 8/23/2017, a 49-year-old female presented for examination and treatment of chronic left sided lumbar spine pain that began on 8/1/1983 after a slip and fall incident. The pain was described as sharp, burning, and deep with radiation into the back of the left leg with an 8 out of 10 on the VAS (visual analog scale) scale, worsening since its onset.

Other Presenting Concerns: The patient also presented with sub-acute chest pain with radiation into the left upper arm.  She described the pain as 8 out of 10 and has stayed the same since 7/1/2017 and is of unknown origin. The patient also reported numbness and tingling of the left lower extremity since 7/1/2017 of unknown origin.  The final reported complaint was numbness and tingling of the left lower arm since 7/1/2017 that seems to start in the left upper back and shoulder and travels to the left lower arm rated at 8/10 on the VAS scale.  The reported symptoms have made sleeping and staying asleep, bending over, using a computer, and concentrating very difficult.

Prior Treatments: Medical care including orthopedic specialist, neurology with prescription medications, chiropractic care, and physical therapy.

Past Medical History: The patient’s past history includes use of prescription and over the counter medications. Surgical history includes tonsils and adenoids in 2008, wisdom tooth extraction in 1990, partial hysterectomy in 2002 and C-section in 1998.  The family health history includes Alzheimer’s disease, anemia, arthritis, diabetes, heart disease, and high blood pressure.

Clinical Findings: The patient presents as a 49-year-old female of average build, clean and neat and well groomed. The vitals are: Height: 61 inches, Weight: 168 lbs, Pulse: 74 bpm, BP: 168/117 mm/Hg in left arm. The patient’s appearance is visibly uncomfortable and restless.

Physical Findings:  Palpation of the paraspinal musculature revealed moderate to severe spasms on the left neck, upper thoracic, and lumbosacral regions.  Orthopedic testing produced pain and dizziness with foraminal compression. Upper thoracic pain with Soto Hall’s test and Sternal compression produced pain on the left anterior chest. Percussion test produced pain in the upper thoracic spine.

Neurologic Testing: Diminished right patella reflex and 3/5 weakness of the left deltoid muscle group and left hamstring muscle group with hypersensitivity to light touch along the C6, C8, T1, L3, L4 and L5 dermatomes were the only positive neurologic findings.  All other tests are within normal limits. Digital muscle testing was ordered following up on the initial manual findings of muscle weakness.  The results were profound left sided deficits in the upper and lower extremities; deltoids 35% weaker than right side, left biceps 68% weaker than right, left triceps 26% weaker than right, wrist extensors 47% weaker than right.  The left hamstring group was 25% weaker than right, left quadriceps 40% weaker than right, left anterior tibialis 44% weaker than right.

Radiographic Findings: I personally reviewed cervical spine and thoracic spine x-rays taken on 8/14/17 and found the following: A severe loss of the cervical lordosis, translation of C3 on C4, C4 on C5 in extension.  T3 is laterally flexed on T4 with body rotations to the left of T3, T4, and T5. A bifid spinous is noted of C6. Mild posterior osteophyte is noted on C3 and C4.  Lumbar x-rays taken on 8/23/2017 revealed pelvic unleveling with right inferiority, anteriority of L5 on S1, an inferior Schmoral’s node on L5 and mild demineralization, disc degeneration and joint degeneration of the lumbar spine.  Moderate to severe foraminal encroachment of L4/L5, L5/S1 is noted. 

MRI findings by radiologist:

Cervical spine:  MRI taken at 2.5 mm slice thickness, with gradient echo and STIR studies revealed C4-C5 right paracentral herniated disc measuring 2 x 3 mm not indenting the cord.  A small syrinx of the cord is noted at level of C6-C7 interspace and extending above and below for a total of 15mm in length and 2mm in width. (Fig. 1A) (3)

Thoracic Spine:  MRI taken at 3.0 mm slice thickness, angled to the disc with STIR and T2 axial views revealed a T4-T5 central protrusion measuring 2 x 4 mm in size in the midline.

Lumbar Spine:  MRI taken at 3.0 mm slice thickness, angled to the disc with STIR and T2 Axial views. L5/S1 demonstrates a central disc herniation with annular tear measuring 3x 6 mm indenting the epidural space and very mildly touching the thecal sac.

I personally reviewed the MRI studies and my impression is as follows:

Cervical spine also demonstrated a C3-C4 disc bulge compressing the thecal sac and deforming the normal shape of the cord by altered CSF pressure. (Fig. 1B) (1).  C5-C6 demonstrates a central protrusion with annular tear compressing the ventral cord in the midline by altered CSF pressure. 

In addition to the radiologist findings, the thoracic study demonstrated significant facet arthritis at the level of T10 that indents the thecal sac and compresses the left posterolateral aspect of the cord. (Fig. 2.) In addition to the radiologist’s findings, I reviewed the lumbar spine and reported an L4-L5 left asymmetric bulge with compression of the left aspect of the thecal sac. (1)

MRI Discussion: After review of the clinical examination findings, the patient’s subjective complaints and the X-ray and MRI imaging studies, the findings were reported to the patient.  I subsequently ordered a brain MRI since I did find an adequate explanation of the left sided sensation and motor deficits. The brain MRI demonstrates a right frontal/parietal subcortical white matter demyelinating lesion in T2/FLAIR images. (Fig 3).

 Fig. 1A: Shows a demyelination of the central cord assessed as a syrinx by radiologist

Fig. 1B:  C3-C4 disc bulge, thecal sac compression, deforming the cord shape and apparent CSF in the central canal of the cord.

Fig. 2:  T10 left facet arthritis indenting the thecal sac and compressing the left posterolateral cord.

Fig. 3:  T2/FLAIR shows left frontal / parietal area of demyelination

Diagnostic Impression: When arriving at a diagnosis all objective findings along with subjective complaints should be considered.  When I considered the profound left sided sensory and motor deficits, the clinical findings and the imaging findings I referred the patient to a neurologist for evaluation of late onset multiple sclerosis. (3) The patient consulted the lead Neurologist in the M.S. Department at Shepard Center in Atlanta who confirmed the diagnosis.

Therapeutic Focus and Assessment: At the report of findings it was explained to the patient that she did have spinal findings that were treatable and that did contribute to her pain.  It was further explained that the care provided is not expected to affect the symptoms that are caused by the M.S. condition.  An 8-week course of non-surgical axial decompression was completed, aimed at reduction of the C3-C4, C4-C5, C5-6, L4-L5 and L5-S1 disc displacements.  At discharge, the patient reported a 90% reduction of spine pain and improvements of the left sided upper and lower extremity weaknesses. She was discharged into the care of her neurologist at that time.

Discussion: Properly trained chiropractors are the perfect fit to be the primary spine care provider. Our education includes extensive training in identifying biomechanical and anatomical lesions of the spine in order to arrive at an accurate diagnosis, prognosis and treatment plan.  This includes proper triage to other healthcare providers. 

In this case the patient presented with a biomechanical issue, disc herniation and degeneration, with facet arthritis, but also with a significant non-spinal pathology that was identified properly and referred appropriately. 

Numerous other physicians and chiropractors evaluated this patient, all of whom treated the obvious without finding the underlying cause of her numbness and weakness, which may have delayed necessary care. A Doctor of Chiropractic, who is well trained and credentialed as a Primary Spine Care physician knows to look beyond the obvious, taking all findings and patient subjective complaints into consideration in order to obtain a proper diagnosis, prognosis, and appropriate plan of treatment for each patient.

  • All identifying information has been removed from this report
  • There is no conflicts of interest in producing this report

References:

1. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Nomenclature 2.0 for Disc PathologySpine J. 2014 Nov 1;14 (11):2525-45.doi: 10.1016/j.spinee.2014.04.022. Epub 2014 Apr 24. 

2. Schippling S. Neurodegener Dis Manag.  MRI for multiple sclerosis diagnosis and prognosis. 2017 Nov;7(6s):27-29.  doi: 10.2217/nmt-2017-0038

3. Pillich D, El Refaee E, Mueller JU, Safwat A, Schroeder HWS, Baldauf J.  Syringomyelia associated with cervical spondylotic myelopathy causing canal stenosis. A rare association.

Neurol Neurochir Pol. 2017 Nov - Dec; 51(6): 471-475. doi: 10.1016/j.pjnns.2017.08.002.Epub 2017 Aug 14.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Efficacy of Chiropractic Care on Cervical Herniated Discs with Degenerative Changes in the Spine

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

INTRODUCTION

When studying chiropractic care in relationship to herniated discs and degeneration, we must first look carefully at each component to ensure that we are consistent with language to ensure a better understanding. There have been many reports in the literature on chiropractic care and its efficacy. However, the reporting is often “muddled” based upon interchangeable terminology utilized to describe what we do. The etiology of the verbiage being used has apparently been part of a movement to gain acceptance within the healthcare community, but this attempt for a change in view by the healthcare community has cost us. Currently, the scientific community has lumped together manipulation performed by physical therapists or osteopaths with chiropractic spinal adjustments because all three professions perform “hands on” manual therapy to the spine. For example, Martínez-Segura, De-la-LLave-Rincón, Ortega-Santiago, Cleland, and Fernández-de-Las-Peñas (2012) discussed how physical therapists commonly use manual therapy interventions directed at the cervical or thoracic spine, and the effectiveness of cervical and thoracic spine thrust manipulation for the management of patients with mechanical, insidious neck pain. Herein lies the root of the confusion when “manipulation” is utilized as a “one-size-fits-all” category of treatment as different professions has different training and procedures to deliver the manipulation, usually applying different treatment methods and realizing different results and goals.

 

 

In addition, as discussed by Sung, Kang, and Pickar (2004), the terms “mobilization,” “manipulation” and “adjustment” also are used interchangeably when describing manual therapy to the spine. Some manipulation and virtually all chiropractic adjusting “…involves a high velocity thrust of small amplitude performed at the limit of available movement. However, mobilization involves repetitive passive movement of varying amplitudes at low velocity” (Sung, Kang, & Picker, 2004, p. 115).

 

To offset confusion between chiropractic and any other profession that involves the performance of some type of manipulation, for the purpose of clarity, we will be referring to any type of spinal therapy performed by a chiropractor as a chiropractic spinal adjustment (CSA) and reserve manipulation for other professions who have not been trained in the delivery of CSA. Until now, the literature has not directly supported the mechanism of the CSA. However, it has supported each component and the supporting literature, herein, will define the neuro-biomechanical process of the CSA and resultant changes. 

HERNIATED DISCS

 

When considering disc issues, Fardone et. Al (2014) defined the nomenclature that has been widely accepted both in academia and clinically and should be adhered to, to ensure that reporting and visualizing pathology is consistent with the morphology visualized. In the past, this has been a significant issue as many have called a bulge a protrusion, a prolapse or herniation. In today’s literature Fardone’s document has resolved much of those problems.

 

Herniated Disc: “Herniated disc is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ‘‘protruded disc’’ or ‘‘extruded disc.’’ The term ‘‘herniated disc,’’ as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ‘‘Localized’’ is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect.” (page E1454)

 

SPINAL DEGENERATION

 

Spinal degenerating is typically associated with vertebral body endplate changes, or degeneration of the bones of the spine and it starts at the edges. These changes were classified by Michael Modic MD, Neuroradiologist in 1988 and were classified into 3 categories:

Viroslav (2016) reported:

On histopathologic section, type 1 changes are associated with fissuring of the endplates and infiltration of vascularized fibrous tissue. Increased osteoclasts, osteoblasts, and reactive woven bone are also found, indicating that type 1 changes are due to an inflammatory-type response. Type 2 changes occur due to conversion of red marrow to fatty marrow, and type 3 changes represent subchondral sclerosis…. later studies have shown that endplate changes can fluctuate between types, and some changes can regress completely. Mixed Modic endplate changes are commonly seen, and support the contention that all of the changes are manifestations of the same process at different stages. Modic changes can also regress following lumbar fusion. (http://radsource.us/vertebral-endplate-changes/)

 

In short, Modic changes are stages reflective of the process the vertebrate undergoes in degeneration. First there is inflammation, then the marrow changes to fat preventing nutrients to feed the bone, followed by sclerotic or degeneration of bone. In the context of this article, how are spinal herniations responding to chiropractic care in lieu of inherent degenerative changes.

 

CHIROPRACTIC CARE

Kressig et. Al (2016) reported:

Although patients who were Modic positive had higher baseline NDI (Neck Disability Index) scores, the proportion of these patients improved was higher for all time points up to 6 months. Pg. 565

The results of the present study on patients with CDH (Cervical Disc Herniation), which indicate better treatment outcomes for patients with CDH with MCs (Modic Changes), are generally consistent with those reported for patients with LDH (lumbar disc herniation), other than the fact that the patients with CDH and MC reported no relapses…It is also important to mention that none of the patients in the present study reported worsening of their condition. Cervical HVLA manipulation (chiropractic spinal adjustment) has been controversial, with suggestions that it can lead to vertebral artery dissection and stroke. However, in 2007, a prospective national survey by Thiel et al studied almost 20 000 patients who were treated with cervical HVLA manipulation or mechanically assisted thrust. There were no reports of serious adverse events, which were defined as symptoms with immediate onset after treatment and with persistent or significant disability. Pg. 572

 

CONCLUSION

 

This report on the literature verifies that chiropractic care renders significant improvement in patients with cervical disc herniation in the presence of inflammation and/or degenerative changes using an accepted disability index in a verifiable scenario. This, in conjunction with other numerous report on the efficacy of chiropractic successfully treating patients with herniated discs offers solutions to an injured public.

 

Links to other articles:

 

Chiropractic Outcome Studies on Treatment of Fragmented/Sequestered and Extruded Herniated Discs and Radicular Pain

 

Spinal Fusion vs. Chiropractic for Mechanical Spine Pain

 

Cervical Disc Herniation with Radiculopathy (Arm Pain): Chiropractic Care vs. Injection Therapy

 

Disc Herniations and Low Back Pain Post Chiropractic Care

 

References:

  1. Kressig, M., Peterson, C. K., McChurch, K., Schmid, C., Leemann, S., Anklin, B., & Humphreys, B. K. (2016). Relationship of Modic Changes, Disk Herniation Morphology, and Axial Location to Outcomes in Symptomatic Cervical Disk Herniation Patients Treated With High-Velocity, Low-Amplitude Spinal Manipulation: A Prospective Study.Journal of manipulative and physiological therapeutics,39(8), 565-575.
  2. Martínez-Segura, R., De-la-LLave-Rincón, A. I., Ortega-Santiago, R., Cleland J. A., Fernández-de-Las-Peñas, C. (2012). Immediate changes in widespread pressure pain sensitivity, neck pain, and cervical range of motion after cervical or thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain: A randomized clinical trial. Journal of Orthopedics & Sports Physical Therapy, 42(9), 806-814.
  1. Sung, P. S., Kang, Y. M., & Pickar, J. G. (2004). Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: A preliminary report. Spine, 30(1), 115-122.
  2. Viroslav A. (2016) Vertebral Endplate Changes, Retrieved from: http://radsource.us/vertebral-endplate-changes/
  1. Fardon, D. F., Williams, A. L., Dohring, E. J., Murtagh, F. R., Gabriel Rothman, S. L., & Sze, G. K. (2014). Lumbar disc nomenclature: Version 2.0. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine, 39(24), E1448-E1465.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Case Report:

The Assessment of Traumatic Cervical Spine Injury and Utilization of Advanced Imaging in a Chiropractic Office.

Vincent M. Simokovich, D.C., Donald A. Capoferri, D.C., DAAMLP, Mark Studin DC, FASBE(C), DAAPM, DAAMLP 

Abstract: the objective is to explore the standard of care regarding the assessment of cervical spine injuries in a setting of a chiropractic office.  Diagnostic studies include physical examination, range of motion studies, orthopedic testing and cervical spine. MRI.

Key words: radicular pain/complaints, adjustment, extrusion, subluxation, herniation, stenosis and spinal manipulation.

Introduction:  On January 30, 2017 a 49 year old female presented in my office to a second opinion examination at the request of her attorney.  She had been involved in a rear-end collision on 12/12/2015. (2) She was transported to a local hospital and arrived with complaints of headaches, disorientation, right-sided neck pain and right arm pain.  At the hospital emergency department CAT scan was taken of her brain, which proved to be negative. She received prescriptions of muscle relaxers and pain relievers and instructed to visit her primary care physician if her symptoms persisted.

She consulted a local Chiropractor on December 15, 2015.  The initial examination included the following from my review of the doctor’s notes: Presenting complaints were right-sided neck pain that radiates to the right arm.  The doctor’s records show a positive cervical compression test and a positive maximum cervical compression test.  Both produced pain bilaterally worse on the right.  Facet provocation tests were positive for facet disease.  Right side radicular pain pattern includes the trapezius and deltoid.  No x-ray studies were included in the doctor’s orders. The patient received 23 chiropractic treatments from 12/15/2015 through 4/5/2016 for a diagnosis of cervical sprain/strain.  The treatments consisted of spinal manipulation and a variety of soft tissue therapies.

Around January 15, 2017 I received a phone call from a local attorney regarding this patient and asking if I would do a second opinion examination on her due to persistent neck pain and right upper extremity pain.  The patient presented on January 30, 2017 for my evaluation.   My clinical findings are as follows:

Vitals:  Age 49, weight 170 lbs. height 5’ 8”, B.P 126/82, pulse 64, Resp. 16/min.

Appearance: in pain

Orthopedic/Range of motion: All cervical compression tests produced pain with radiation bilaterally worse on the right.  Range of motion studies revealed: 40 degrees of left rotation and 32 degrees of right rotation with radiating pain produced by both motions. 

Palpation: cervical spine palpation produced centralized spine pain that radiates to the right shoulder with numbness in the right arm and hand. 

The patient informed me during the examination that her pain made it difficult to sleep through the night.  If she was on her right side her right arm and hand would go numb immediately.  A big part of this patient’s life was riding and caring for her horse and she could not do either because it resulted in severe neck and arm pain.

My recommendation to her and her attorney was to obtain a cervical spine MRI with a 1.5 Tesla machine due to the high quality images it can produce. MRI is a highly sensitive tool to evaluation of neurologic tissue including the spinal cord and nerve roots. (1) I bypassed the x-ray at this time due to the clinical presentation and 12% of spinal cord with injuries having no radiographic abnormality. (3)

Imaging:

Figure 1: T2 Sagittal Cervical Spine MRI

Fig 2: T2 Axial Cervical Spine with Scout line through C3/4.

Radiology Report:  The report and the images demonstrated a right paracentral disc extrusion measuring 9 mm and extending 8 mm cranial/caudal causing abutment of the spinal cord. (Fig 1)(2) Additionally the diameter of the central canal was reduced to 8.1mm and projected into the right lateral recess resulting in severe stenosis of the right neural canal. (Fig 2)  Additional findings not pictured: C4/5 demonstrated a 2.5 mm bulging disc with facet hypertrophy with moderate stenosis of the left neural canal and severe stenosis of the right neural canal.  C5/6 demonstrated a 1.5 mm posterior subluxation narrowing the central canal to 9.1 mm with unconvertebral joint hypertrophy resulting in moderate right and severe left neural canal stenosis.  C6/7 revealed a broad based disc herniation worse on the left measuring 3.6 mm resulting in severe neural canal stenosis bilaterally complicated by unconvertebral joint hypertrophy. The MRI findings correlate with the patient’s clinical presentation.  (4)

Discussion: When the patient returned to a consultation on the MRI findings my recommendation was to consult a neurosurgeon. (3) Her attorney asked me if the treating doctor acted incompetently.  My only response was that I would have ordered the MRI immediately before treating the patient with manual manipulation.  The case is likely to go to trial and there is a good chance that I will be called in as an expert witness.  It is almost a guarantee that the defense attorney will ask me if I would have treated the patient for such a long period of time without an MRI or whether the treating doctor could have made the problem worse.  The failure to accurately determine a diagnosis may result in malpractice action or a board hearing or both for this treating doctor and I would have ordered the MRI immediately considering the radicular findings and symptoms.  After any myelopathic or significant radiculopathic symptoms a referral of advanced imaging needs to be performed in order to conclude and accurate diagnosis, prognosis and treatment plan prior to rendering care.  Diagnostic appropriateness in the case of traumatic injury or with any etiology with neurologic symptoms or findings necessitates following triage protocols.  In this case, an immediate 2-3mm MRI of the cervical spine is clinically indicated and proved integral to the safe care of this patient.

References:

1.         Haris, A.M., Vasu, C., Kanthila, M., Ravichandra, G., Acharya, K. D., & Hussain, M. M. 2016. Assessment of MRI as a modality for evaluation of soft tissue injuries of the spine as compared to intraoperative assessment. Journal of Clinical and Diagnostic Research, 10(3), TC01-TC05

2.         Schneider RC, Cherry G, Pantek H. The syndrome of acute central cervical spinal cord injury, with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J Neurosurg 1954; 11: 546–577.

3.         Tewari MK, Gifti DS, Singh P, Khosla VK, Mathuriya SN, Gupta SK et al. Diagnosis and prognostication of adult spinal cord injury without radiographic abnormality using magnetic resonance imaging: analysis of 40 patients. Surg Neurol 2005; 63:

204–209.

4.         Miyanji F, Furian J, Aarabi B, Arnold PM, Fehlings MG. Acute cervical traumatic spinal cord injury: MR imaging Findings correlated with neurologic outcome-prospective study with 100 consecutive patients. Radiology 2007; 243: 820–827.

           

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Chiropractic Outcome Studies on Treatment of Fragmented/Sequestered and Extruded Herniated Discs and Radicular Pain

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

 

Citation: Studin M., Owens W. (2016) Chiropractic Outcomes on Fragmented/Sequestered and Extruded Discs and Radicular Pain, American Chiropractor, 34 (11) 26, 28, 30, 32-33

 

Research Review:

 

Disc herniations are a common diagnostic entity in chiropractic practices with varied etiologies ranging from auto accidents to sports injuries to slips and falls and any other type of trauma that can cause the disc to tear. Treatment has varied from doing nothing to conservative care to opiates and the surgery and in the recent past, opiates and surgery have been the treatment of choice leaving a population of too many addicts and too often failed surgeries. This is not to suggest that all surgeries or opiates are unnecessary, but if drugs and/or surgery can be avoided it is an obvious choice.

 

 

When considering disc issues, Fardone et. Al (2014) defined the nomenclature that has been widely accepted both in academia and clinically and should be adhered to, to ensure that reporting and visualizing pathology is consistent with the morphology visualized. In the past, this has been a significant issue as many have called a bulge a protrusion, a prolapse or herniation. In today’s literature Fardone’s document has resolved much of those problems.

 

Herniated Disc: “Herniated disc is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ‘‘protruded disc’’ or ‘‘extruded disc.’’ The term ‘‘herniated disc,’’ as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ‘‘Localized’’ is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect.” (page E1454)

 

 

Protruded Disc: “Disc protrusions are focal or localized abnormalities of the disc margin that involve less than 25% of the disc circumference. A disc is ‘‘protruded’’ if the greatest dimension between the edges of the disc material presenting beyond the disc space is less than the distance between the edges of the base of that disc material that extends outside the disc space. The base is defined as the width of the disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space. The term ‘‘protrusion’’ is only appropriate in describing herniated disc material, as discussed previously.” (page E1455)

 

Extruded Disc: “The term ‘‘extruded’’ is consistent with the lay language meaning of material forced from one domain to another through an aperture and with reference to a disc, the test of extrusion is the judgment that, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base measured in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space.” (page E1455)

 

Extruded Sequestered, Fragmented Disc or Migrated Disc: “Extruded disc material that has no continuity with the disc of origin may be characterized as ‘‘sequestrated.” A sequestrated disc is a subtype of ‘‘extruded disc’’ but, by definition, can never be a ‘‘protruded disc.’’ Extruded disc material that is displaced away from the site of extrusion, regardless of continuity with the disc, may be called ‘‘migrated,’’ a term that is useful for the interpretation of imaging studies because it is often impossible from images to know if continuity exists. (page E1455)

 

Bulging Disc: “The terms ‘‘bulge’’ or ‘‘bulging’’ refer to a generalized extension of disc tissue beyond the edges of the apophyses. Such bulging involves greater than 25% of the circumference of the disc and typically extends a relatively short distance, usually less than 3 mm, beyond the edges of the apophyses. ‘‘Bulge’’ or ‘‘bulging’’ describes a morphologic characteristic of various possible causes. Bulging is sometimes a normal variant (usually at L5–S1), can result from an advanced disc degeneration or from a vertebral body remodeling (as consequent to osteoporosis, trauma, or adjacent structure deformity), can occur with ligamentous laxity in response to loading or angular motion, can be an illusion caused by posterior central subligamentous disc protrusion, or can be an illusion from volume averaging (particularly with CT axial images).” (page E1455)

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbertin (2010) that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for herniated disc a more recent study (Lehman ET. Al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one-year mark after the onset of the original complaint. Although one might argue that the patient would have gotten better with no treatment it was reported that after two weeks of no treatment only 36% of the patients felt better and at 12 weeks up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to their normal life without pain, drugs or surgery.

 

             Chiropractic Care and Herniated Discs with Leg Pain

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

In a prospective outcome study, Ehrler et. Al. (2016) studied outcomes of chiropractic care on both extruded and sequestered disc patients. They reported “The purpose of this study was to evaluate whether specific MRI features, specifically axial location and type (bulge, protrusion, extrusion, sequestration) of a herniated disc, are associated with the short and long term outcomes of patients treated with high-velocity, low-amplitude SMT specifically to the level of the symptomatic, MRI confirmed, herniation. This is the first study to address this question. Studies searching for predictors of improvement after treatment in previous low back pain patients did not target type and axial location of the herniated discs.Additionally, patients with disc sequestration were not excluded from this study.” (Page 196)

 

Ehrler et. Al. continued “Over 77% of patients with disc sequestration reported clinically relevant “improvement” compared to 66.7% of patients with extrusion. Although not statistically significant, 100% of patients with sequestration reported clinically relevant improvement at the 3-month data collection time point and at all data collection time points a higher proportion of patients with sequestration reported clinically relevant improvement. There were no significant differences for disc herniation location either by spinal level or in the axial plane for any of the data collection time points. This now calls into question the traditional thinking that disc sequestrations are more dangerous than herniations that remain attached to the parent disc and are more likely to require surgery. However, the studies reporting this did not consider chiropractic spinal manipulative therapy as a treatment option.” (page 197)

 

I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified” (Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Fardon, D. F., Williams, A. L., Dohring, E. J., Murtagh, F. R., Gabriel Rothman, S. L., & Sze, G. K. (2014). Lumbar disc nomenclature: Version 2.0. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine, 39(24), E1448-E1465.
  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniations Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiscectomy for sciatica? A prospective randomized clinical study. Journal of Manipulative and Physiological Therapeutics, 33 (8) 576-584
  3. Ehrler M., Peterson C., Leeman S., Schmid C., Anklin B., Humphreys B. K., (2016) Symptomatic, MRI Confirmed, Lumbar Disc Herniations: A Comparison of Outcomes Depending on the Type and Anatomical Axial Location of the Hernia in Patients Treated with High-Velocity, Low-Amplitude Spinal Manipulation, Journal of Manipulative and Physiological Therapeutics, 39 (3) 192-199
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems


by Anthony P. Calantoni, DC, CCEP, DAAMLP


Title: The Utilization of Long Term Care for Herniated Lumbar Discs with Chiropractic for the Management of Mechanical Spine Pain


Abstract: To explore the utilization of chiropractic treatment consisting of spinal adjusting, axial traction, electrical muscle stimulation, and core stabilization exercise for the management of mechanical spine pain. Diagnostic studies included physical examination, orthopedic and neurological examinations, and lumbar spine MRI.  The patient reports long-term success in reducing pain levels and increasing functionality by having the ability to perform activities of daily living (ADL’s) without frequent flare-ups which he reported of prior to undergoing chiropractic treatment.

Key Words: low back pain, sciatica, chiropractic adjustment, disc bulge, disc herniation, axial  traction, spinal manipulative therapy.

Introduction
On 2/6/2015, a 49 year old male certified nursing assistant, presented for consultation and examination due to a work injury which occurred on 11/12/2001.  The patient stated he sustained a lifting injury that resulted in severe low back pain.  He stated that he was under the care of a pain management interventionist receiving epidural injections in his lumbar spine on an ongoing basis since the injury occurred.  He added that the injections helped him to cope with the elevated pain levels he experienced on a frequent basis. The patient had previously received chiropractic and physical therapy for his injury and reported that the therapies did help him when he was actively treating.  He informed it had been over 3 years since he last treated with chiropractic or physical therapy.

The patient presented to my office on 2/6/2015 with a chief complaint of lumbar pain.  He rated the discomfort as a 7 on a visual analog scale of 10 with 10 being the worst and the pain was noted as being constant (76-100% of the time).  The onset of pain was a result of the work injury described above.  He reported that the pain would aggravate by activities which required excessive or repetitive bending, lifting, and pulling. He stated he experienced flare-up episodes 4-6 times a month depending on the type of activities he was involved with.  The quality of the discomfort was described as aching, gnawing, sharp, shooting, and painful and was noted as being the worst at the end of the day. He stated that when his pain levels were elevated, it would limit his ability of getting a good night sleep.  The patient further noted he was experiencing numbness and tingling in both legs and his right foot.

Prior History:

The patient denied any prior or subsequent low back injuries and/or traumas.

Clinical Findings:

The patient was 5 feet 10 inches and weighed 230 pounds. His sitting blood pressure was 132/86 and his radial pulse was 74 BPM.  The patient’s Review of Systems and Family History were unremarkable.

An evaluation and management exam was performed.  The exam consisted of visual assessment of range of motion, manual muscle tests, deep tendon reflexes, digital and motion palpation, and other neurological and orthopedic tests.  Palpation revealed areas of spasm, hypertonicity, asymmetry, and end point tenderness indicative of subluxation at T12, L2, and L4.  Palpation of the lumbar muscles revealed moderate to severe muscle spasms in the left piriformis, right piriformis, right sacrospinalis, right gluteus maximus, right erector spinae, right quadratus lumborum and right iliacus. He presented with postural deviations that were found using a plumb line assessment showing short right leg (pelvic deficiency), head tilted to the left, high left shoulder and high right hip.  Point tenderness was notably present along the midline of the spine at the L4 and L5 level.

Manual, subjectively rated strength tests were performed on some of the major muscle groups of the lower extremities, based on the AMA Guides to the Evaluation of Permanent Impairment, 4th Ed., 1993/5th ed., 2001. A rating scale of five to zero was used, with five representing normal muscle strength.  A muscle strength loss of the lower extremities indicates a neurological facilitation resulting from dysfunction in the lumbar spine.  Grade 4 muscle weakness was noted on the right extensor hallicus longus.

Dermatomal sensation was decreased at L4 on the right and decreased at L5 on the right.

Reflex testing was completed and was diminished: 0/+2 on the right patella and +1/+2 on the left patella. The following lumbar orthopedic examinations were performed and found to be positive: Ely's on the right, Hibb's on the right, Iliac compression test and Bragard's on the right.

Lumbar Range of Motion tested with Dual Inclinometers:

Range of Motion            Normal         Examination                       % Deficit

Flexion

90

40

 

56

Extension

25

10

 

60

Left Lateral Flexion

40

20

 

50

Right Lateral Flexion

40

15

 

62

Left Rotation

35

25

 

29

Right Rotation

35

20

 

43

Flexion and left lateral bending were painful at end range. The patient’s limitation to bend is corroborated by the persistent spasticity of lack of motion eliciting pain upon exertion in the lumbar spine.

MRI Results:

The MRI images were personally reviewed.  The lumbar MRI performed on 9/29/2014 revealed anterior positioning of the L4 vertebral body with respect to L5 with a right L4-L5 protrusion compromising the right neural foramen. There is a central herniation at the L5-S1 disc.

Fig. 1,  (A), (B), (C) shows in T2 MRI images (A) is Sagittal and (B) is Axial at L4-L5 and (C) is Axial at L5-S1

Fig. 1 (A)  Sagital

 

Fig. 1 (B) T2 Axial at L4-L5

Fig. 1 (C) T2 Axial at L5-S1




After reviewing the history, physical and neurological examination, and MRI’s it was determined that chiropractic treatment was medically indicated and warranted.  Frequency of treatment was determined 1 time a week.

The patient was placed on a treatment plan consisting of high velocity low amplitude chiropractic adjustments, axial traction, electrical muscle stimulation, and core stabilization exercise. The patient responded in favorable fashion to the chiropractic treatment over a 6 month period.  The patient demonstrated subjective and objective improvement and his care plan was reduced to one time every two weeks to manage and modulate pain levels associated with his permanent condition.

On follow-up re-evaluation approximately 9 months after starting supportive treatment the patient showed improvement in range of motion testing. 

Lumbar Range of Motion was tested with Dual Inclinometers:

Range of Motion            Normal         Examination                       % Deficit

Flexion

90

70

 

13

Extension

25

20

 

20

Left Lateral Flexion

40

35

 

12

Right Lateral Flexion

40

30

 

25

Left Rotation

35

30

 

15

Right Rotation

35

25

 

29

The patient also reported a reduction in pain levels rating the low back discomfort as a4 on a scale of 10 with 10 being the worst and the pain was noted as beingintermittent 25 to 50% of the time. Decreased muscle spasm in the lumbar paraspinal muscles was noted as well as better symmetry and tonicity.  The patient reported the ability of getting a better night sleep and waking up in the morning with less rigidity and achiness.  He stated he was able to perform his work duties and activities of daily living with less flare-ups and exacerbations occurring only 1-2 times a month.  The core training exercises we worked on have helped stabilize the patient’s spine and protected it from reinjuring the already injured tissues. 

Conclusion:

Chiropractic care has been shown to be both safe and effective in treating patients with disc herniation and accompanying radicular symptoms1-4. Spinal chiropractic adjustive therapy has been proven to modulate pain6. This patient presented with chronic low back pain sequela to an injury that occurred over 13 years ago.  The patient had prior success in reduction of pain when he was treating with chiropractic in the past then discontinued treatment.  The patient has been treating with pain management intervention since the injury occurred and it has helped him reduce his pain but has done minimal for him from a functional and mechanical standpoint. The history and exam indicated the presence of 2 herniated discs in the lumbar spine. Lumbar MRI’s were ordered prior to being evaluated and the images were viewed to establish an accurate diagnosis, prognosis, and treatment plan. Long term chiropractic treatment has been utilized successfully in this case study to reduce pain levels and restore the patient’s functional capacity of performing activities of daily living and work duties with less flare ups and exacerbations of low back pain.     

Competing Interests:  There are no competing interests in the writing of this case report.

De-Identification: All of the patient’s data has been removed from this case.

  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniation Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. Hahne AJ, Ford JJ, McMeeken JM, "Conservative management of lumbar disc herniation with associated radiculopathy: a systematic review,"Spine35 (11): E488–504 (2010).
  3. Rubinstein SM, van Middelkoop M, et. al, "Spinal manipulative therapy for chronic low-back pain,"Cochrane Database Syst Rev(2): CD008112. doi:10.1002/14651858.CD008112.pub2. PMID 21328304.
  4. Hoiriis, K. T., Pfleger, B., McDuffie, F. C., Cotsonis, G., Elsangak, O., Hinson, R. & Verzosa, G. T. (2004). A randomized clinical trial comparing chiropractic adjustments to muscle relaxants for subacute low back pain. Journal of Manipulative and Physiological Therapeutics, 27(6), 388-398.
  5. Coronado, R. A., Gay, C. W., Bialosky, J. E., Carnaby, G. D., Bishop, M. D., & George, S. Z. (2012). Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis.  Manuscript in preparation. 
  6. Whedon, J. M., Mackenzie, T.A., Phillips, R.B., & Lurie, J.D. (2014). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69. Spine,  (Epub ahead of print) 1-33.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Case Report

 

By: Karen M. Callaghan, DC

Title: Spinal Adjustments are Safe in the Presence of Herniated disc with the Absence of Cord Compression

Abstract: The objective was to explore the use of MRI to increase the efficacy and safeness of adjusting the cervical spine in the presence of a disc herniation when there is no evidence of cord compression on MRI.

Key Words: Chiropractic, spinal adjustment, MRI, herniation

Introduction:  A 30 year old male patient presented to the office on 1/8/14 with injuries from a motor vehicle accident.  The motor vehicle accident had occurred 3 weeks prior to his first visit.  The patient was the restrained front seat passenger.  The car he was travelling in struck another car and the patient’s car was flipped over onto its roof.  While the car remained on its roof the patient was able to crawl out and awaited medical attention.  The patient was taken by ambulance to the hospital where he was examined and testing was ordered.  The patient had multiple CT scans of the head and X-rays of the cervical and lumbar.  The CT of the head revealed a nasal fracture and the patient underwent immediate surgery to repair his broken nose. 

The patient presented three weeks post-accident with persistent and progressive daily occipital headaches, neck pain into the shoulders bilaterally, upper back pain and lower back pain that radiates into the legs and down into the feet bilaterally. He has swelling at the left anterior knee and bandages around the right elbow and two black eyes. 

The patient states that he was having difficulty with regular activities of daily living including walking for more than 15-20 minutes, long periods of standing, more than an hour of sitting, any bending or lifting and any regular daily chores.  The patient also states he was having difficulty getting a restful night’s sleep due to the pain.  The patient’s visual analog scale rating was 10 out of 10.

History: The patient denied any prior history of neck or back pain.  No reported prior injuries or traumas.

Objective Findings:  An examination was performed and revealed the following:

            Range of Motion: 

Cervical Motion Studies:

Flexion: Normal=60                      Exam-   25 with pain  with spasm 

Extension: Normal=50                  Exam-   20 with pain  with spasm

Left Rotation: Normal=80             Exam-   35 with pain  with spasm

Right Rotation: Normal=80           Exam-   35 with pain  with spasm

Left Lat. Flex: Norma=-40             Exam-   15 with pain  with spasm

Right Lat. Flex: Normal=40           Exam-   15 with pain  with spasm

 

Dorsal-Lumbar Motion Studies:

Flexion: Normal=90                  Exam-   35 with pain   with spasm

Extension: Normal=30              Exam-   10 with pain  with spasm 

Left Rotation: Normal=30         Exam-   10 with pain  with spasm

Right Rotation: Normal=30       Exam-   5 with pain  with spasm 

Left Lat. Flex: Normal=20         Exam-   5 with pain  with spasm 

Right Lat. Flex: Normal=20       Exam-   5 with pain  with spasm 

 

               

Orthopedic Testing

The orthopedic testing revealed the following positive orthopedic tests in the cervical spine: Valsalva’s indicating the presence of a disc at L4-S1 and the lower cervical region, foraminal compression indicating radicular pain in the lower cervical region, Jackson’s compression , shoulder depressor and cervical distraction all indicating pain in the lower cervical region.  The lumbar testing revealed a positive Soto-Hall with pain at the L4-S1 level, Kemps positive with pain from L4-S1, Straight Leg raiser with pain at 60 degrees, Milgram’s with pain at the L5-S1 level, Lewin’s with pain at L5-S1, and Nachlas eliciting pain in the L5-S1 region.

 

Neurological Testing

The neurological exam revealed bilateral upper extremity tingling and numbness into the shoulder on the left and down the right arm into the hand. The lower extremity revealed tingling and numbness into the gluteal’s bilaterally with left sided radicular pain in to the leg into left foot.  The pinwheel revealed hypoesthesia at C7 bilaterally and L5 bilaterally dermatome level. The patient was unable to perform the heel-toe walk

The chiropractic motion palpation and static palpation exam revealed findings  at C 1,2 , 5, 6, 7 and T 2,3,4,9, 10  and L 3,4,5 as well as the sacrum.

X Ray  Studies:

The hospital had cervical x-rays and a CT of the head on the day of the accident. Thoracic and lumbar studies were needed as a result of the positive testing and the patients history and complaints The x-ray studies revealed a reversed cervical curve and misalignment of the C1,2,5,6,7 and the lumbar studies revealed a mild IVF encroachment at L5-S1 with rotations at L3,4,5.

The results of the exam were reviewed.  The patient’s positive orthopedic testing, neurological deficits coupled with the decreased range of motion and positive chiropractic motion and static palpation indicated the necessity to order both cervical[1]and lumbar[2]  MRI’s4.

 MRI results

The MRI images were personally reviewed.  The cervical MRI revealed a right paracentral disc herniation at the level of C5-6 with impingement on the anterior thecal sac.  There is also a C6-7 disc bulge impinging on the anterior thecal sac. The lumbar MRI revealed an L5-S1 disc herniation.  There are disc bulges at from L2-L4.

                  CERVICAL MRI STUDIES

LUMBAR MRI IMAGES

Treatment Plan:

After reviewing the history, examination, prior testing, x-rays, MRI’s and DOBI care paths3 it was determined that chiropractic adjustments6  wereclinically indicated

The patient was placed on a treatment plan of spinal manipulation with modalities including intersegmental traction, electric muscle stimulation and moist heat.  Diversified technique was used to adjust the subluxation diagnosed levels of C1,2,5,6,7 and L3,4,5.  Although there were herniated and bulging discs present in the cervical and lumbar spine there was no cord compression. Therefore; there was no contraindication to performing a spinal adjustment.  As long as there is enough space between the cord and the herniation or bulge then it is generally safe to adjust.5

The patient responded quite favorably to the spinal adjustments and therapies over the course of 6 months of treatments.  Initially, the patient was seen three times a week for the first 90 days.  The patient demonstrated subjective and objective improvement and his care plan was adjusted accordingly and reduced to two visits per week for the next 90 days of care.  His range of motion returned to 90% of normal:

Range of Motion: 

Cervical Motion Studies:

Flexion: Normal=60                      Exam-   55 with no pain 

Extension: Normal=50                  Exam-   40 with mild tenderness

Left Rotation: Normal=80             Exam-   75 with mild tenderness

Right Rotation: Normal=80           Exam-   75 with mild tenderness

Left Lat. Flex: Norma=-40             Exam-   35 with no pain 

Right Lat. Flex: Normal=40           Exam-   35 with no pain

 

Dorsal-Lumbar Motion Studies:

Flexion: Normal=90                  Exam-   80 with tenderness

Extension: Normal=30              Exam-   25 with tenderness 

Left Rotation: Normal=30         Exam-   25 with no pain

Right Rotation: Normal=30       Exam-   25 with no pain

Left Lat. Flex: Normal=20         Exam-   20 with no pain 

Right Lat. Flex: Normal=20       Exam-   20 with no pain

 

The patient had decreased spasm, decreased pain, increased ability to perform ADL’s and his sleep had returned to normal. The patient states that he was no longer having the same difficulties with regular activities of daily living.  He was now able to walk for 45 minutes to 1 hour before the lower back pain flared up, he is able to stand for 1-2 hours before the lower back pain begins, he is able to sit for an hour or more before the lower back pain flares up. When the patient bends or lifts he has learned to use his core and lifts less than 20-30 pounds to avoid exacerbating his low back.  The patient also states he was no longer having difficulty getting a restful night’s sleep.  The patient’s visual analog scale rating was 3 out of 10.

Conclusion:

The patient presented 3 weeks post trauma with cervical and lumbar pain as well as headaches.  The symptoms were progressing and the pain was radiating into the upper and lower extremities.  The history and exam indicated the presence of a herniated disc in the lower lumbar and cervical region.  Cervical and lumbar MRI’s were ordered to identify the presence of the herniated disc as well as to determine whether or not the patient should be adjusted.  The MRI results of both the cervical and lumbar MRI revealed herniated discs, however, because these discs were not causing cord compression it was safe to adjust the cervical and lumbar spine5.

Competing Interests:  There are no competing interests in the writing of this case report.

 

De-Identification: All of the patient’s data has been removed from this case.

 

References

  1. New England Journal of Medicine; Cervical MRI, July 28, 2005, Carette S. and Fehlings M.G.,N Engl J Med 2005; 353:392-399MRI for the lumbar disc, March 14  2013, el Barzouhi A., Vleggeert-Lankamp C.L.A.M., Lycklama à Nijeholt G.J., et al., N Engl J Med 2013; 368:999-1000 http://www.state.nj.us/dobi/pipinfo/carepat1.htm -16.7KB
  2. New England Journal of Medicine; Cervical-Disk HerniationN Engl J Med 1998; 339:852-853September 17, 1998DOI: 10.1056/NEJM199809173391219
  3. Is It Safe to Adjust the Cervical Spine in the Presence of a Herniated Disc? By Donald Murphy, DC, DACAN, Dynamic Chiropractic, June 12, 2000, Vol. 18, Issue 13
  4. Treatment Options for a Herniated Disc;  Spine-Health, Article written by:John P. Revord, MD

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Acute and Chronic Herniated Discs Have Significantly Favorable Outcomes With Chiropractic Care

 

95% Reported Improvement 

 

A report on the scientific literature 


 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Approximately 70% of the population will have back pain at some point in time in their life according to Lehman ET. Al. (2014). The pain ranges from mild to either moderate or severe and can often be debilitating and associated with or without leg pain if it’s originating from your lower back. Treatment for this common problem is usually broken up into two categories, surgical versus conservative care however, I am going to break it into three categories: surgical, medication and conservative care. This article is going to focus on the continual growing body of evidence of treatment of herniated discs via conservative care and specifically with a chiropractic spinal adjustment.

 

It was reported by McMorland, Suter, Casha,du Plessis, andHurlbertin 2010 that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for herniated disc a more recent study (Lehman ET. Al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year mark after the onset of the original complaint. Although one might argue that the patient would have gotten better with no treatment it was reported that after two weeks of no treatment only 36% of the patients felt better and at 12 weeks up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to their normal life without pain, drugs or surgery.

 

             Chiropractic Care and Herniated Discs with Leg Pain

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

 

The caveat is that there are patients who could need drugs or surgery and an accurate diagnosis is paramount and it is incumbent upon the doctor of chiropractic to be fully trained in both the diagnostic and treatment facets of care. It is also important that the chiropractor is well-versed in MRI protocols and interpretation as well as disc pathology to be able to triage the patient accordingly based upon the clinical presentation inclusive of the MRI results.

 

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon et al. (2014) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM (spinal manipulation) induces injury into normal healthy tissues has been identified.(Whedon et al.,2014, p. 5) 

 

References:

 

  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients With Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniations Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiscectomy for sciatica? A prospective randomized clinical study.Journal of Manipulative and Physiological Therapeutics, 33
  3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2014). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69.Spine, [Epub ahead of print]1-33.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Cervical Disc Herniation with Radiculopathy (Arm Pain): Chiropractic Care vs. Injection Therapy

 

85.7% decrease in pain with spinal adjustments

25% decrease in pain with injection therapy

 

A report on the scientific literature 


 By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

Mark C. Zientek, DC DAAMLP, CHCQM

William J. Owens DC, DAAMLP

 

There is a large portion of the population who are dealing with various pain syndromes which includes neck pain from cervical disc herniations. According to Peterson, Schmid, Leemann, Anklin, and Humphreys (2013), this occurs in 83.2 out of every 100,000 people where symptoms range from mild to severe, but all negatively affect a person’s quality of life. To improve one’s quality of life, it becomes necessary to choose ways to manage and alleviate pain while reducing the side-effects of the actual treatment.  Common methods range from simple masking of symptoms with over-the-counter medications to prescription opiates and invasive surgeries.  Most people look for ways to manage pain and return to daily living activities without risky procedures and their inherent complications.

The use of over-the-counter medications and narcotics such as codeine and/or an oxycodone-acetaminophen combination like Percocet, is a common form of treatment by many primary care physicians and medical specialists alike.  Kuehn (2013) reported:

The FDA is concerned about inappropriate use of [opioid pain medications], which has reached epidemic proportions in the United States,” said FDA Commissioner Margaret A. Hamburg, MD, during a press briefing in September.

There was a 300% increase in prescribing of opioid pain medications between 1999 and 2010, a period in which the number of painkiller overdose deaths among women increased 5-fold and the number of such overdose deaths among men increased 3.6 times, according to the Centers for Disease Control and Prevention (MMWR Morb Mortal Wkly Rep. 2013:62[26];537-542). In 2010 alone, more than 15,000 US deaths were attributed to drug overdoses, and of the 10,000 overdose deaths in which a drug was identified, nearly two-thirds involved opioid pain medications…

                The announcement comes after growing calls for the agency to tighten restrictions on the use of these drugs. In July 2012, Physicians for Responsible Opioid Prescribing (PROP), a group that includes prominent specialists in addiction, public health, emergency medicine, and pain medicine, petitioned the FDA to change the labeling for this class of drugs to discourage inappropriate use (Kuehn BM.JAMA. 2012;308[12]:1194-1196). The group argued that the drugs’ indications were overly broad and not consistent with the evidence base and may have been facilitating marketing for broader use than was appropriate. Specifically, the group argued that the agency should drop moderate chronic non-cancer pain as an indication, set a maximum daily dose, and add a maximum duration of use of 90 days. (p. 1547).

The problem, as acknowledged by the FDA, is that the AMA and many in medical academia appear to concur with the addictive qualities of the medications. The alternative option is the chiropractic spinal adjustment and it has been concluded in scientific outcomes to be a superior avenue for the relief of pain and reduction of disability with few side effects.

The earlier discussed study by Peterson et al. (2013) has confirmed that spinal adjustments (manipulations) provide significant improvement for patients with neck pain from cervical herniated discs, as well as arm pain (cervical radiculopathy) without the inclusion of opiates or surgery. In addition, this improvement was seen at all times, particularly at 3 months. In addition, in this Swiss study, it was found that the presence of radiating arm pain (radiculopathy) was not a contraindication to chiropractic treatment nor was it a negative forecaster of outcomes.

This study also found that with cervical herniated discs with radiculopathy, 85.7% of the patients experiencing acute pain reported significant improvement by three months with no patients being worse. For the sub-acute patients, 76.2% reported significant improvement by three months with no patients being worse with their disability indexes which were reduced from the onset of chiropractic care. 

Another form of treatment for neck and arm pain commonly used is cervical spinal injections. In the same study compares cervical injection provided a 25% reduction in patients’ symptoms. The results of this current study of spinal adjustment (manipulation) treatments had substantially better results with more than 85% of acute patients and 76% of sub-acute patient improving, with a 65% reduction in arm pain as well as 59% reduction in neck pain at three months.

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration, particularly as a first line treatment. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury in normal healthy tissues has been identified” (Whedon et al., 2015, p. 265). One risk factor for chiropractic care is a disc herniation. A properly credentialed chiropractor who has been trained to differentially diagnose and appropriately triage the patient is clinically indicated in this population of patients. The chiropractor can engage in co-management with medical specialists.

To best serve patients, a clear understanding of the outcomes and risks of procedures becomes necessary. Further research into the efficacy of chiropractic manipulation provides a clearly safe and effective treatment to the above-referenced condition. Examination of the research provides insight of avenues for relief of symptoms upon which physicians can undoubtedly rely.

Reference:

1. Peterson, C. K., Schmid, C., Leemann, S., Anklin, B., & Humphreys, B. K. (2013). Outcomes from magnetic resonance imaging–confirmed symptomatic cervical disk herniation patients treated with high-velocity, low-amplitude spinal manipulative therapy: A prospective cohort study with 3-month follow-up. Journal of Manipulative and Physiological Therapeutics, 36(8), 461-467

2. Kuehn, B. M. (2013). FDA tightens indications for using long-acting and extended-release opioids to treat chronic pain.The Journal of the American Medical Association, 310(15), 1547-1548.

3. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Herniated Discs, Radiating Pain and Chiropractic

A report on the scientific literature 



80% of chiropractic patients reported excellent or good result in a 2 year study


By
Mark Studin DC, FASBE (C), DAAPM, DAAMLP

 

 
Pain radiating down your leg secondary to a herniated disc is a common and often disabling occurrence. A disc in your spine is comprised of 2 basic components, the inner nucleus pulposis that is gelatinous in composition and the outer annulus fibrosis that is fibro-cartilaginous and very strong. When a person experiences trauma and the forces are directed at the spine and disc. The pressure on the inside of the disc is increased (like stepping on a balloon) and the internal nucleus pulposis creates pressure from the inside out. It tears the outer annulus fibrosis causing the internal material to go beyond the outer boundaries of the disc. This has often been misnamed a “slipped disc” because the disc doesn’t slip or slide, it is torn from the trauma allowing the internal material to escape.
 
Conversely, a bulging disc, which gets confused with a herniated disc, is a degenerative “wear and tear scenario” that occurs over time with the annulus fibrosis degenerating. This can also be a “risk factor” allowing the disc to herniate with less trauma due to the degeneration or thinning of the disc walls. This, however, is a conversation for another article.
 
Lifetime prevalence of a herniated disc has been estimated to be 35% in men and 45% in woman and it has been estimated that 90% of all leg pain secondary to herniated discs occurs at either the L4-5 or L5-S1 levels. It has also been reported that average duration of symptoms is 55.9 weeks, underscoring the critical necessity for finding a viable solution for these patients.1
 
Although many of these are surgical cases, it has been estimated that only 2-4% have actual surgical indications.Therefore, most patients need to be treated non-surgically and until recently, there have been few metrics affording guidance to the healthcare profession and public alike directing them to the right care. In a 2009 research report, culminating a 2 year study, a clear direction is now available for patients that suffer with radiating pain from herniated discs.
1 The results of the study show that as a result of chiropractic care, “clinically meaningful improvement in pain intensity was seen in 73.9% of patients (Murphy, Hurwitz, & McGovern, 2009, p. 728). "'Good' or 'excellent' improvement was reported by 80% of patients" (Murphy, Hurwitz, & McGovern, 2009, p. 723).
 
Chiropractic treatment protocols utilized were 2-3 times per week tapering down to 2 times per week and less until the patients were released from care. The reports go on to state that there were no major complications with any patient. The results of the study also suggest that patients with cervical radiculopathy (neck pain radiating in to the arms), lumbar spinal stenosis, pregnancy related lumbo-pelvic pain and chronic work related neck-arm pain may also benefit from non-surgical treatment such as chiropractic care.1
 
This study clearly shows that chiropractic is not only an alternative for disc related radiating pain, but would be the most logical place to begin care, as 80% of the patients studied got well and without being exposed to drugs, their side effects or the added burden to the healthcare system with more costly treatments. In practice, the balance of the patients who need necessary drugs or more complicated intervention would be referred to the appropriate specialist as is the standard of care within chiropractic.
 
This study along with many others concludes that a drug-free approach of chiropractic care is one of the best solutions for disc and radiating pain. To find a qualified doctor of chiropractic near you go to the US Chiropractic Directory at www.uschirodirectory.com and search your state.




References:

1.  Murphy, D. R., Hurwitz, E. L., & McGovern, E. E. (2009). A nonsurgical approach to the management of patients with lumbar radiculopathy secondary to herniated disk: A prospective observational cohort study with follow-up. Journal of Manipulative and Physiological Therapeutics, 32(9), 723-733.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Herniations