Deceptive Dogmatic Reporting Despite Successful Chiropractic Outcomes

Revealing the deception of low back pain naturally resolving

…and the dogma of non-specific back pain

 

Mark Studin, DC
William J. Owens DC
Timothy Weir, DC 

 

Citation:Studin M., Owens W., Weir T. (2018) Deceptive Dogmatic Reporting Despite Successful Chiropractic Outcomes, American Chiropractor, 40 (11) 10, 12-15

A report on the scientific literature

Over the past decade, there has been a growing body of evidence demonstrating the “how and why” of chiropractic evidenced-based results. However, there has also been a historical level of reporting dogmatic issues related to the “the natural history of back pain” and “non-specific back pain” that deceptively enter and intersect the conversation to apparently discredit “pro-chiropractic” evidenced-based research that has persisted in contemporary literature. This review is centered on those issues, and the references for the above comments will ensue in the paragraphs below.

The National Institute of Neurological Disorders and Stroke reports “Most low back pain is acute, or short-term, and lasts a few days to a few weeks. It tends to resolve on its own with self-care, and there is no residual loss of function.”

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet. Kaiser Permanente, a national health system reports, “For most patients with back pain, the condition will improve within a few days or weeks.” https://wa.kaiserpermanente.org/static/pdf/public/guidelines/back-pain.pdf

Kaiser Permanente goes on to report, “The primary goal of treatment is to maximize function and quality of life, rather than to eliminate pain. Some ongoing or recurrent pain is normal and not indicative of a serious problem. Avoid exposing the patient to unhelpful or possibly risky interventions. As a general rule, an intervention in which the patient is an active participant (e.g., physical therapy, walking, stretching, yoga) rather than a passive recipient (e.g., chiropractic, massage, acupuncture) is deemed to have greater potential to promote self-efficacy and self-management skills in the long term.”

https://wa.kaiserpermanente.org/static/pdf/public/guidelines/back-pain.pdf

Gedin, Edmar, Sundberg, and Burström in 2018 reported “Patients with acute back pain reported statistically significant and MCID (Minimal Clinically Important Difference) improvements in back pain intensity, back disability, HRQoL (Health-Related Quality of Life instrument), and statistically significant improvements in self-rated health, over four weeks following chiropractic care. Patients with chronic back pain reported statistically significant, albeit smaller and non MCID, changes for all PRO except self-rated health.

Interestingly, Gedin et al. have a significant level of statistics of demonstrating percentages of subjects who showed improvement and choose not to report that in the written part of the report, thereby not rendering a statistical interpretation. However, they included a caveat to perhaps minimize the positive results by reiterating the same deceptive dogma as discussed above. Gedin et. al then reported “However, it has been suggested that 90% of patients with acute low back pain recover within six weeks (van Tulder et al., 2006), which may also help explain the current findings of rapid improvements.(pg. 16) This opinion published in 2018 was referenced and supported by a 12-year old study which clearly ignored the contemporary literature.

Tamcan, Mannion, Eisenring, Horisberger (2010) reported on the only population-based study these authors were able to identify and concluded “When the 12-month follow-up period was divided into four equal time periods and, subsequently, clusters, it was seen that the majority of individuals placed in the moderate persistent [pain] cluster on the basis of the first 3 months data remained in this cluster at the following intervals. A reasonable consistency across time was also found for the clusters mild persistent and severe persistent. In contrast, the consistency of membership for the cluster initially identified as fluctuating was low, especially after six months.” (pg. 455-456) This study, which again is the only identified population-based study indicates that pain does not resolve “naturally” as was reported: “fluctuation was low, especially after six months.”

Knecht, Humphyres and Wirth (2017) reported on the recurrence of low back pain and stated, “Only 1 in 3 LBP (low back pain) episodes completely resolve within a year, and the percentage of LBP that goes from acute to chronic varies among studies from 2% to 34%.” Knecht et. Al (2017) also went on to report “Patients presenting with a subacute problem, lasting for more than 14 days at baseline, were at higher odds for a recurrent course, whereas the odds for a chronic course were higher only for patients presenting with a chronic problem (3 months) at baseline. Downie et al. reported that pain duration of more than five days was a factor that negatively affects prognosis. Similarly, duration of the current episode emerged as the most consistent factor for prognosis after one year in a study by Bekkering et al. and even predicted disability after five years. These findings suggest on the one hand that it might be prudent to seek professional advice [referenced chiropractic care in the article] early on in the pain episode.” (pg. 431)

 

 

These papers a part of the research trend supporting what the chiropractic profession has known all along, the natural progression of low back pain resulting in resolution is based on dogma and not supported by the research evidence. Additionally, the low back pain care path reported previously by Kaiser Permanente appears to be biased towards the denial of care and not consistent with the published literature.

Gedin et. Al (2018) also report, “it has been estimated that the vast majority of back pain cases is of non-specific origin.” (pg. 3) The concept of simply focusing on the treatment of non-specific back pain would render chiropractic no different than physical therapists when focusing on the “non-specific” nature of spine pain as the arbiter for care while the focus must be on the biomechanical compensation and individual motor units of the spine. Previous literature has verified that the supposition that “non-specific” is synonymous with ‘unobjectifiable” is erroneous since it was previously reported that chiropractic treats definite biomechanical changes in the motor units of the spine, therefore resulting in “very specific” biomechanical pathology.

Panjabi in 1992, presented a detailed work explaining how the biomechanical systems within the human spine react to the environment, how it can become dysfunctional and cause pain. He stated “Presented here is the conceptual basis for the assertion that the spinal stabilizing system consists of three subsystems, the vertebrae, discs, and ligaments constitute the passive subsystem, all muscles and tendons surrounding the spinal column that can apply forces to the spinal column constitute the active subsystem and finally, the nerves and central nervous system comprise the neural subsystem, which determines the requirements for spinal stability by monitoring the various trans­ducer signals [of the nervous system] and directs the active subsystem to provide the needed stability.” He goes on to state, “A dysfunction of a component of any one of the subsystems may lead to one or more of the following three possibilities, an immediate response from other subsys­tems to successfully compensate, a long-term adaptation response of one or more subsystems or an injury to one or more components of any subsystem.”

 

Panjabi continues, “It is conceptualized that the first response results in normal function, the second results in normal function but with an altered spinal stabilizing system, and the third leads to overall system dysfunction, producing, for example, low back pain. In situations where additional loads or complex postures are anticipated, the neural control unit may alter the muscle recruitment strategy, with the temporary goal of enhancing the spine stability beyond the normal requirements.” (pg. 383) This is where the idea of biomechanical compensation was identified.

 

 

Panjabi’s lifelong work summarized in the above work is the basis for the underlying mechanics of spine pain that does NOT correlate well to anatomical findings. Anatomical findings are fracture, tumor or infection and allopathy has labeled anything else “non-specific low back pain” which continues to maintain a dogmatic perspective in both clinical decision making and all too often, the literature, despite compelling evidence to the contrary.

 

 

Cramer et al. (2002) further clarified the biomechanics of spinal failure at the motor until level and reported, “One component of spinal dysfunction treated by chiropractors has been described as the development of adhesions in the zygapophysial (Z) joints after hypomobility. This hypomobility may be the result of injury, inactivity, or repetitive asymmetrical movements… one beneficial effect of spinal manipulation may be the “breaking up” of putative fibrous adhesions that develop in hypomobile or ‘fixed’ Z joints. Spinal adjusting of the lumbar region is thought to separate or gap the articular surfaces of the Z joints. Theoretically, gapping breaks up adhesions, thus helping the motion segment reestablish a physiologic range of motion.” (p. 2459)

Evans (2002) reported, “on flexion of the lumbar spine, the inferior articular process of a zygapophyseal joint moves upward, taking a meniscoid with it. On attempted extension, the inferior articular process returns toward its neutral position, but instead of re-entering the joint cavity, the meniscoid impacts against the edge of the articular cartilage and buckles, forming a space-occupying ‘ lesion’ under the capsule: a meniscoid entrapment. A large number of type III and type IV nerve fibers (nociceptors) have been observed within capsules of zygapophyseal joints. Pain occurs as distension of the joint capsule provides a sufficient stimulus for these nociceptors to depolarize. Muscle spasm would then occur to prevent impaction of the meniscoid.” (pg. 252)

Evans (2002) continued, “an HVLA manipulation, involving gapping of the zygapophyseal joint reduces the impaction and opens the joint, so encouraging the meniscoid to return to its normal anatomical position in the joint cavity. This ceases the distension of the joint capsule, thus reducing pain.”  (p. 253)

The involvement of nociceptors and nociceptive impulses stimulates the cortical regions of the brain which evokes a cortical response to that noxious stimuli. Haavik et al. (2017) reported the effects of a chiropractic spinal high velocity-low amplitude adjustment by stating “These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord.” (pg. 1)

The persistent utilization of “non-specific” in reference to specific biomechanical alterations and failure in the human spine is dogmatic and deceptive since it “lumps together” all types of manual treatment, where chiropractic, based upon its unique application differs from other forms of manual therapy performed by physical therapy, acupuncture, and massage therapy. It differs in the ability of chiropractors to diagnosis and manages spinal compensation. In comparison to each other, each discipline is disparate in goals, application, and science and when not considered as such, lends itself to continue deceptive dogmatic arguments ignoring the evidenced-based truths of chiropractic.

References:

  1. The National Institute of Neurological Disorders and Stroke (2018) Retrieved from https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet
  2. Kaiser Permanente, Non-specific Back Pain Guidelines (2017) retrieved from” https://wa.kaiserpermanente.org/static/pdf/public/guidelines/back-pain.pdf
  3. Gedin, F., Dansk, V., Egmar, A. C., Sundberg, T., & Burström, K. (2018). Patient-reported improvements of pain, disability and health-related quality of life following chiropractic care for back pain–A national observational study in Sweden. Journal of Bodywork and Movement Therapies.
  4. Tamcan, O., Mannion, A. F., Eisenring, C., Horisberger, B., Elfering, A., & Müller, U. (2010). The course of chronic and recurrent low back pain in the general population. Pain150(3), 451-457.
  5. Knecht, C., Humphreys, B. K., & Wirth, B. (2017). An Observational Study Recurrences of Low Back Pain During the First 12 Months After Chiropractic Treatment. Journal of manipulative and physiological therapeutics40(6), 427-433.
  6. Downie AS, Hancock MJ, Rzewuska M, Williams CM, Lin CW, Maher CG. Trajectories of acute low back pain: a latent class growth analysis. 2016;157(1):225-234
  7. Bekkering GE, Hendriks HJ, van Tulder MW, et al. Prognostic factors for low back pain in patients referred for physiotherapy: comparing outcomes and varying modeling techniques. Spine (Phila Pa 1976). 2005;30(16):1881-1886.
  8. Panjabi, M. M. (1992). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. Journal of spinal disorders5, 383-383.
  9. Cramer, G. D., Gregerson, D. M., Knudsen, J. T., Hubbard, B. B., Ustas, L. M., & Cantu, J. A. (2002). The effects of side-posture positioning and spinal adjusting on the lumbar Z joints: A randomized controlled trial with sixty-four subjects.Spine,27(22), 2459-2466.Evans, D. W. (2002). Mechanisms and effects of spinal high-velocity, low-amplitude thrust manipulation: Previous theories. Journal of Manipulative and Physiological Therapeutics, 25(4), 251-262.
  10. Haavik, H., Niazi, I. K., Jochumsen, M., Sherwin, D., Flavel, S., & Türker, K. S. (2016). Impact of spinal manipulation on the cortical drive to upper and lower limb muscles. Brain Sciences7(1), 2.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

Chiropractic Care is More Effective in Lowering Disability than Medical Care for Acute and Sub-Acute Low Back Pain

 

By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

By any standard, back pain is one of the most prevalent disabilities plaguing our population. According to Block, 2014, over 100 million Americans experience chronic pain with common painful conditions including back pain, neck pain, headaches/migraines, and arthritis, in addition to other painful conditions such as diabetic peripheral neuropathy, etc... In a large study in 2010, 30.7% of over 27,000 U.S. respondents reported an experience of chronic, recurrent pain of at least a 6-month duration. Half of the respondents with chronic pain noted daily symptoms, with 32% characterizing their pain as severe (≥7 on a scale ranging from 0 to 10). Chronic pain has a broad impact on emotional well-being and health-related quality of life, sleep quality, and social/recreational function. (pg. 1)

 

According to Schneider et al., 2015 “low back pain is among the most common medical elements an important public health issue. Approximately 50% of the United States working – age adults experience low back pain each year with a quarter of US adults reported in episode back pain in the previous three months. Back pain is the most common cause of disability for persons younger than 45 years old and one of the most common reasons for office visits to primary care physicians in the United States as well as Europe and Australia.” (pg. 2009)

 

In chiropractic, although chiropractic’s scope is significantly beyond back pain, based upon the sheer volume of low back pain sufferers, there simply aren’t enough chiropractors to manage this “epidemic sized” condition. In addition, chiropractors as a profession do not want to be labeled as solely “low back pain doctors.” Although the authors firmly agree, we also must acknowledge while treating mechanical spine pain (no fracture, tumor or infection) that the formal health care system has fallen short and in its effort, has contributed to the opiate epidemic.  Healthcare in the United States has had a myopic focus on “anatomical” sources of spine pain such as herniated disc and degenerative disc disease while ignoring the impact that faulty biomechanics have on spine pain and disability.  When it comes to the biomechanics of the spine, it is the responsibility of the chiropractic profession, based upon training and outcomes to lead the nation in its diagnosis, management and treatment.  When we consider both anatomical and biomechanical spine conditions are significant contributors to the spine pain and disability epidemic in the United States, we must understand its full impact and the standard healthcare system’s (allopathic) inability to manage the biomechanical side. 

 

Block, 2014 continued “In addition to the pervasive personal suffering associated with this disease, chronic pain (author’s note: where low back pain is one of the most significant contributors) has a substantial negative financial impact on the economy. Direct office visits, diagnostic testing, hospital care, and pharmacy costs are only a portion of the picture, with combined medical and pharmacy costs averaging $5,000 annually per individual. Chronic pain results in a significant economic burden on the healthcare system, with estimated costs ranging from $560 to $635 billion 2010 dollars, more than the annual cost of other priority health conditions including cardiovascular disease, cancer, and diabetes. Moreover, the estimated annual costs of the workplace impact of pain range from $299 to $335 billion from absenteeism and reduced productivity.” (pgs. 1-2) These statistics help us to understand that “management” of spine pain is a critical component of cost reduction since the costliest portion of healthcare services is when a patient enters the system.  Continued mismanagement of mechanical spine pain causes patients to move in and out of disability status. That reentry is what drives up cost, chiropractic is the 3rd largest health profession in the United States and the largest with the education to lead the diagnosis and management of mechanical spine pain.

 

When we compare who is better educated to manage mechanical back pain cases, we also must conclude as a result, who is better educated to successfully treat those cases based upon outcomes. In this comparison, we will consider the education of chiropractic vs. traditional musculoskeletal education and competency as well as treatment outcomes.

 

In a recent article written by Humphreys, Sulkowski, McIntyre, Kasiban, and Patrick (2007), they stated, “In the United States, approximately 10% to 25% of all visits to primary care medical doctors are for MSK [musculoskeletal] complaints, making it one of the most common reasons for consulting a physician...Specifically, it has been estimated that less than 5% of the undergraduate and graduate medical curriculum in the United States and 2.26% in Canadian medical schools is devoted to MSK medicine” (p. 44).

 

Musculoskeletal complaints have a major impact on the healthcare system and although many patients believe that traditional providers are highly trained, recent publications relating to basic competency have shown otherwise.  For example, the authors cited another study stating, Humphreys et al., 2007 continues by stating, “A study by Childs et alon the physical therapists’ knowledge in managing MSK conditions found that only 21% of students working on their master’s degree in physical therapy and 25% of students working on their doctorate degree in physical therapy achieved a passing mark on the BCE [Basic Competency Evaluation]” (p. 45). 

The authors continued by reporting, “The objective of this study was to examine the cognitive (knowledge) competency of final-year chiropractic students in MSK [musculoskeletal] medicine" (p. 45).  "The typical chiropractic curriculum consists of 4,800 hours of education composed of courses in the biological sciences (i.e., anatomy, embryology, histology, microbiology, pathology, laboratory diagnosis, biochemistry, nutrition, and psychology), chiropractic sciences, and clinical sciences (i.e., clinical diagnosis, neurodiagnostic, ortho-rheumatology, radiology, and psychology).  As the diagnosis, treatment, and management of MSK disorders are the primary focus of the undergraduate curriculum as well as future clinical practice, it seems logical that chiropractic graduates should possess competence in basic MSK medicine” (Humphreys et al., 2007, p. 45).

The following results were published in this paper for the Basic Competency Examination and various professions that are in the front line of the diagnosis and treatment of musculoskeletal conditions.  In Table 2 on page 47, the following results were shown when the passing score was established at 73% or greater:

Recent medical graduates (18%), medical students, residents, and staff physicians (20.7%), osteopathic students (29.6%) physical therapy (MSc level, 21%), physical therapy (doctorate level, 26%), chiropractic students (51.5%). 

In Table 2 on page 47, the following results were show when the passing score was established at 70% or greater. 

Recent medical graduates (22%), medical students, residents, and staff physicians (NA), osteopathic students (33%) physical therapy (MSc level, NA), physical therapy (doctorate level, NA), chiropractic students (64.7%). 

According to Frank Zolli DC, former Dean at the University of Bridgeport, College of Chiropractic, “Fundamental to the training of doctors of chiropractic is 4,820 hours (compared to 3,398 for physical therapy and 4,670 to medicine) and students receive a thorough knowledge of anatomy and physiology. As a result, all accredited doctor of chiropractic degree programs focus a significant amount of time in their curricula on these basic science courses. It is so important to practice these courses that the Council on Chiropractic Education, the federally recognized accrediting agency for chiropractic education, requires a curriculum which enables students to be proficient in neuromusculoskeletal evaluation, treatment and management. In addition to multiple courses in anatomy and physiology, the typical curriculum in chiropractic education includes physical diagnosis, spinal analysis, biomechanics, orthopedics and neurology. To qualify for licensure, graduates of chiropractic programs must pass a series of examinations administered by the National Board of Chiropractic Examiners (NBCE) in 4 separate parts including clinical evaluations. It is therefore mandatory for a chiropractor to know the structure and function of the human body,  the study of neuromuscular and biomechanics is weaved throughout the fabric of chiropractic education.” As a result, the doctor of chiropractic has an expertise in the diagnosis and management of biomechanical musculoskeletal disorders that the traditional health care system is lacking. Chiropractic offers significant insight where traditional health care has no answers.

 

When it comes to direct influence of the chiropractic adjustment on spine pain patients, a 2005 study by DeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms. This study validates the reasoning behind why people with severe muscle spasms in the low back respond well to chiropractic care which in turn is shown to prevent future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications. This study renders evidence that chiropractic spinal adjusting provides a direct nervous system and physiologic response to the human body. 

 

In a recently published case study and literature review in the New England Journal of Medicine, Deyo and Mirza (2016) had published a case study and literature review on the diagnosis and treatment of lumbar disc herniation with sciatica. What is useful in this publication is the review of the literature in basic, easy to use format highlighting the most common treatments associated in lumbar disc herniation with sciatica.  

Regarding the chiropractic adjustment, the authors stated “A randomized trial of chiropractic manipulation for sub-acute or chronic “back-related leg pain” (without confirmation of nerve-root compression on MRI) showed that manipulation [author’s note: Chiropractic spinal adjustment]  was more effective than home exercise with respect to pain relief at 12 weeks (by a mean 1-point decrease on a pain-intensity scale on which scores ranged from 0 to 10, with higher scores indicating greater severity of pain) but not at 1 year. This is important since early intervention of chiropractic care will reduce early dependency on pain medication. In addition, a randomized trial involving patients who had acute sciatica with MRI-confirmed disk protrusion showed that at 6 months, significantly more patients who underwent chiropractic manipulation had an absence of pain than did those who underwent sham manipulation (55% vs. 20%).  Neurologic complications in the lumbar spine, including worsened disk herniation or the cauda equina syndrome, have been reported anecdotally, but they appear to be extremely rare.” (pg 1768) 

In relationship to counseling versus supervised exercise, the authors reported,“A systematic review of five randomized trials showed that patients who participated in supervised exercise had greater short-term pain relief than patients who received counseling alone, but this reduction in pain was small and these patients did not have a long-term benefit with respect to reduced pain or disability.” (pg. 1768) 

Concerning oral steroids, the paper reported, “Randomized trials show no significant advantage of systemic glucocorticoid (steroid) therapy over placebo with respect to pain relief or reduced rates of subsequent surgical intervention, and they show little, if any, advantage with respect to improvement in physical function.” (pg. 1767) 

The authors commented on opioid medication by stating,“Data from randomized trials to support the use of opioids in patients with sciatica are lacking.   Systematic reviews suggest that opioids have slight short-term benefits with respect to reduced back pain.  Convincing evidence of benefits of long-term use is lacking, and there is growing concern regarding serious long-term adverse effects such as fractures and opioid overdose and abuse.” (pg. 1767) 

Focusing on spinal injection therapy the paper continues by reporting, “A systematic review showed that patients with radiculopathy who received epidural glucocorticoid injections had slightly better pain relief (by 7.5 points on a 100-point scale) and functional improvement at 2 weeks than patients who received placebo. There were no significant advantages at later follow-up and no effect on long-term rates of surgery.” (pg. 1768)

This report serves as a nice general guideline for the primary care [conservative] management of lumbar disc herniation with sciatica.  We see that in addition to any anatomical correction there is a positive response to biomechanical interventions for which the properly trained and credentialed chiropractor is an important provider.  

Cifuentes et al., 2011 stated, “Given that chiropractors are proponents of health maintenance care, we hypothesize that patients with work-related LBP [low back pain] who are treated by chiropractors would have a lower risk of recurrent disability because this specific approach would be used.Conversely, similar patients treated by other providers would have higher recurrence rates because the general approach did not include maintaining health, which is a key component to prevent recurrence” (Cifuentes, Willetts, & Wasiak, 2011, p. 396). 

This research is unique and comprehensive in that it tracked injured workers’ compensation patients in multiple states and it reviewed claims dated between January 1, 2006 and December 31, 2006 including 894 cases out of a pool of 11,420 claims of non-specific low back pain cases.  (The states were chosen because the patients had the ability to select their doctors on their own and were not mandated a provider.)   

Relating to the results, the authors report, “In our study, after controlling for demographics and severity indicators, the likelihood of recurrent disability due to LBP for recipients of services during the health maintenance care period by all other provider groups was consistently worse when compared with recipients of health maintenance care by chiropractors. Care from chiropractors during the disability episode (“curative”), during the health maintenance period (main exposure variable, “preventative”), and the combination of both (curative and preventive) was associated with lower disability recurrence HRs” (p. 403). This article validates chiropractic's role in the prevention of the recurrence of back pain in patients with chronic spine disorders.  

When analyzing why, the reasons are evident and based upon the literature. A chiropractic spinal adjustment reduces verifiable bio-neuro-mechanical failures (commonly known as vertebral subluxation in our profession) at the spinal level.  Non-steroidal anti-inflammatory drugs do not and there is no “spontaneous recovery,” only less pain with the underlying biomechanical failures persisting awaiting Wollf’s law to adversely remodel the spine leading to certain increased permanent disability over time. Therefore, if “literature based outcomes” “ruled the day” (as they should in a reasonable world void of politics and financial interest) at the legislative and reimbursement levels, then we would be a healthier society and spend far less money while avoiding unnecessary side effects and increasing the potential for significantly greater disabilities in the future.

 

References:

  1. Block, C. K. (2014). Examining neuropsychological sequelae of chronic pain and the effect of immediate-release oral opioid analgesics (Order No. 3591607). Available from ProQuest Dissertations & Theses Global. (1433965816). Retrieved from http://search.proquest.com/docview/1433965816?accountid=1416
  1. Humphreys, B. K., Sulkowski, A., McIntyre, K., Kasiban, M., & Patrick, A. N. (2007). An examination of musculoskeletal cognitive competency in chiropractic interns. Journal of Manipulative and Physiological Therapeutics, 30(1), 44-49.
  2. Deyo, R. A., & Mirza, S. K. (2016). Herniated Lumbar Intervertebral Disk. New England Journal of Medicine, 374(18), 1763-1772.
  3. Cifuentes, M., Willetts, J., & Wasiak, R. (2011). Health maintenance care in work-related low back pain and its association with disability recurrence. Journal of Occupational and Environmental Medicine, 53(4), 396-404.
  1. Schmale, G. A. (2005). More evidence of educational inadequacies in musculoskeletal medicine. Clinical Orthopaedics and Related Research, 437, 251-259.
  2. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study. Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  3. Goldberg, H., Firtch, W., Tyburski, M., Pressman, A., Ackerson, L., Hamilton, L., Avins, A. L. (2015). Oral steroids for acute radiculopathy due to a herniated lumbar disk: A randomized clinical trial.Journal of the American Medical Association (JAMA), 313(19), 1915-1923.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

CASE REPORT:  Conservative care and axial distraction therapy for the management of cervical and lumbar disc herniations and ligament laxity post motor vehicle collision.

By Josh Johnston, DC

Title: Conservative care and axial distraction therapy for the management of cervical and lumbar disc herniations and ligament laxity post motor vehicle collision.

Abstract:  This middle-aged female was injured in a vehicle collision causing her to sustain disc and additional ligament injuries in the cervical and lumbar spine.  Diagnostic studies included physical examination, orthopedic and neurological testing, lumbar MRI, multiple cervical MRI’s, CRMA with motion cervical radiographs and EMG studies.  Typically, conservative care is initiated prior to interventional procedures, and this case study seeks to explore the usage of passive therapy for mechanical spine pain and noted anatomic disc lesions after failure of interventional procedures.  She reported both short term and long term success regarding pain reduction along with improvement in her activities of daily living after initiating conservative care, and continued to report further reductions in pain with periodic pain management using conservative care.

Key Words: neck pain, low back pain, paresthesia, disc herniation, spinal cord indentation, CRMA, axial distraction therapy, DRX9000, spinal manipulative therapy, motor vehicle collision

Key: MRI (magnetic resonance imaging); EMG (electromyography study); CRMA (computerized radiographic mensuration analysis); CT (computerized topography); PTSD (Post-traumatic stress disorder); PRN (as needed); VAS (visual analog scale); HVLA (high velocity low amplitude).

Introduction:  The 49-year-old married female (Spanish speaking patient) reported that on March 4th, 2014 she was the seat-belted driver of a truck that was struck by a much larger fuel truck changing lines, hitting her vehicle at the front passenger side (far side, side impact).  The force of the impact caused her truck to be lifted up and the right wheel popped off.  Her head hit the window after impact and the spinal pain and complaints started approximately 24 hours later. Two days after the crash she went to the emergency department.  Occupant pictures were taken describing an out of position occupant injury. She did not report any additional significant trauma after the collision. 

Prior to her evaluation at our clinic, she utilized multiple providers for diagnosis and treatment over the course of 11 months.  She went to the emergency department, utilized 3 pain management medical doctors, neuropsychologist and a cognitive rehabilitation therapist.    Imaging included radiographs and MRI of the right shoulder revealing rotator cuff tear; radiographs of the lumbar and thoracic spine, and left hand; CT of the head and cervical spine were performed; MRI cervical (3) and lumbar spine.  Medications prescribed included Fentanyl, Percocet, Naprosyn, Cyclobenzaprine, Norco, Hydrocodone-acetaminophen, Soma, and Carisoprodol.  Physical therapy was provided for spinal injuries and she did not respond to treatment.  The neurosurgeon recommended epidural steroid injections and facet blocks.  Cervical nerve blocks and cervical trigger point injections, cervical and lumbar epidural steroid injections (ESI), lateral epicondyle steroid injections were performed, none of which were palliative.  Post-concussion disorder and PTSD with major depressive disorder were diagnosed.

On February 12th, 2015, she presented to our office with neck pain (average 6/10 VAS) that affected her vision, with paresthesia’s in both upper extremities radiating to the hands with numbness.  She had low back pain (average 6/10 VAS), and she additionally reported paresthesia at the plantar surface of feet bilaterally.  She had left elbow pain, right shoulder pain, knee pain, headaches and “anxiety” along with anterior sternal pain.

Her injuries were causing significant problems with her activities of daily living.  Summarily she had increased pain with lifting, increased pain and restricted movement with bending, walking and carrying.  She had been unable to perform any significant physical activity from the time of the crash in March 2014 until March 2015.  Her right hand was always hurting and her forearms.  She was not able to clean windows or do laundry, difficulty using stairs, problems with mopping, ironing and cleaning.  She had to limit her walking and jogging primarily due to neck pain and right arm pain.  She was not able to sit for long periods of time and sleeping was disrupted due to numbness in her hands.  She was only able to walk on a treadmill for 10 minutes before having to stop due to pain, prior to the crash she would exercise for an hour. 

Prior History: No significant prior musculoskeletal or contributory medical history was reported.

Clinical Findings (2/12/15):  She had a height of 5’2”, measured weight of 127 lbs.

Visual analysis of the cervical spine revealed pain in multiple ranges of motion including flexion, extension, bilateral rotation and bilateral side bending.  On extension pain was noted in the upper back, on rotation pain was noted in the posterior neck, and on lateral flexion pain was noted contralaterally.

Visual analysis of the lumbar spine revealed pain in the low back on all active ranges of motion, including flexion, extension and side bending, pain primarily at L5/S1.

Dual inclinometer testing was ordered based on visual active range of motion limitations with pain. 

Sensory testing was performed of the extremities, C5-T1 and L4-S1.  No neurological deficits other than right sided C5 hypoesthesia.  

Foraminal compression test produced pain in the cervical spine.  Foraminal distraction test caused an increase in pain in the neck.  Jackson’s test on the right produced pain bilaterally in the neck.  Straight leg raise bilaterally produced low back pain, double Straight leg raise produce pain at L5/S1 at 30 degrees.

Muscle testing of the upper extremities was tested at a 5/5 with the exception of deltoid bilaterally tested at a 4/5.  The patient’s deep tendon reflexes of the upper and lower extremities were tested including Triceps, Biceps, Brachioradialis, Patella, Achilles: all were tested at 2+ bilaterally, equal and reactive. No evidence of clonus of the feet and Hoffman’s test was unremarkable.

C3-C5 right sided segmental dysfunction was noted on palpation. T5-T12 spinous process tenderness on palpation. Low back pain on palpation, particularly L5/S1.

Imaging Results:

MRI Studies:

I reviewed the cervical MRI images taken May 2014 with the following conclusions (images attached):

  1. Dramatic reversal of the normal cervical curvature, apex C5/6.
  2. C5/6 herniation, indentation of the spinal cord anteriorly.  High signal posterior on STIR.
  3. Due to the angular kyphosis of the cervical spine and axial slices performed, C6/7 slices did not render a pure diagnostic image for disc disruption.

Fig. 1 (A) T2 Axial C5/6, 2 months post injury               Fig. 1 (B) Sag T2 C5/6

I reviewed cervical MRI images taken September 17th, 2014 approximately 6-months post injury, and rendered the following conclusions:

  1. Reversal of the normal cervical lordosis.
  2. C5/C6 herniation (extrusion type) with indentation of spinal cord, appropriate CSF noted posteriorly.

I reviewed the cervical MRI dated October 24th, 2015 (images attached):

  1. C4/5 herniation, extrusion type, left oriented into the lateral recess and neural canal causing moderate neural canal stenosis
  2. C5/C6 disc protrusion, anterior cord abutment, thecal sac involvement.
  3. C6/7 herniation with early spondylosis changes

Fig. 2 (A) 3D Axial C4/5, 19 months post injury                   Fig. 2 (B) Sag T2 C4/5

IMPRESSIONS: C4/5 herniation noted on 10/24/15 was not noted on prior images.  The patient reported no additional injury or symptoms between MRI studies, so it is postulated that initial slices revealed a false negative; or due to the severity of abnormal cervical biomechanics, it is possible that the C4/5 disc herniated between the pre/post MRI’s with no significant increase in symptomatology.  There was improvement at C5/6 related to disc abnormality and cord involvement (see below). 

Fig. 3 (A) 3D Axial C5/6, 19 months post injury    Fig. 3 (B) Sag T2 C5/6, 19 months post injury

 

Functional Radiographic Analysis (Computerized Radiograph Mensuration Analysis):

 

The cervical flexion/extension images were digitized February 2016 and interpreted by myself and Robert Peyster MD, CAQ Neuroradiology, revealing a loss of Angular Motion Segment Integrity at intersegment C6/C7 measured at 19.7 degrees (maximum allowed 11 degrees), indicating a 25% whole person impairment according to the AMA Evaluation of Permanent Impairment Guidelines 5th edition1.  CRMA provided from Spine Metrics, independent analysis.

Evidence of significant ligament injury causing functional subfailure was measured at C3/4 at 10.4 degrees and at C4/5 measuring 10.9 degrees regarding angular motion.  Abnormal paradoxical translation motion measured at C6/7 and C7/T1.

Functional Testing

  1. EMG of the upper extremity revealed bilateral C6 radiculopathy, December 16th, 2015. 
  2. Range of Motion Cervical Dual Inclinometry:          

      Initial Max       4 months later       % Improvement

Cervical                       Extension        44                    42                                -5%

                                    Flexion            40                    62                                55%

Cervical                       Left                 25                    41                                64%

Lateral flexion            Right               12                    26                                117%

Cervical                       Left                 46                    59                                28%

Rotation                      Right               43                    73                                70%

Conservative treatment rendered: A neurosurgical referral was made for assessment and surgical options.  Conservative care was initiated despite failure of other medical procedures since there is “further evidence that chiropractic is an effective treatment for chronic whiplash symptoms2-3.  The patient was placed on an initial care plan of 2-3x/week for 5 months, with a gap in passive care for 1 month.

  1. 39 cervical nonsurgical distraction/decompression visits utilizing DRX9000 therapy
  2. 23 chiropractic visits.  Instrument adjusting cervical spine was utilized with Arthrostim.  Non-rotatory HVLA (high velocity low amplitude) spinal adjustments were performed thoracic and lumbar spine, applied A-P.  No HVLA spinal adjustments to the cervical spine.

 

Prior to being placed at maximum medical improvement she had persistent low back symptoms, continued tingling in the fingertips and occasional neck pain at a 4/10, with her upper extremity paresthesia’s improved 50%.  She continued with pain management chiropractic care after MMI, approximately 1 visit every 3-4 weeks with axial distraction to the cervical and lumbar spine, chiropractic adjustments as needed (PRN).  2 years/9 months post collision, and 1 year/9 months after initiating conservative care at our clinic, she reports only slight (1-2/10 VAS) spinal complaints with her primary concern being a torn rotator cuff injury from the crash that still requires surgical intervention.  After initiating care at our clinic, no other interventional procedures were performed, although medication usage persisted.  Due to improvement in symptoms and functional status, spinal surgery was not considered. She still utilizes Aleve PRN, 1-2 tablets. No significant active spinal rehabilitation was utilized. The patient was given at home active care consisting only of cervical and lumbar stretches, walking, and ice to affected areas. 

Conclusion:While chiropractic care is safe even in the presence of herniations and radicular symptoms, “the likelihood of injury due to manipulation may be elevated in pathologically weakened tissues”4. Due to cord involvement, the provider decided to utilize low force procedures although HVLA spinal adjustments to the cervical spine could be considered safe due to lack of cord compression.  HVLA spinal adjustments A-P were utilized in the lumbar and thoracic spine not only for short term pain relief but also as part of managing the chronic low back pain secondary to ligament/disc damage.  While previously theorized to be only episodic, low back pain can be a lifelong condition requiring patients to seek ongoing care5.  This care can be active, passive, pharmaceutical, interventional, or conservative in nature, but ongoing pain management therapy is often required for permanent ligament conditions.  There is clear benefit to the patient population to be able to avoid surgical intervention due to risks, costs, ongoing prescription medication usage and adjacent level degeneration in the future6.  Avoiding opioid usage is also a high priority in today’s environment. 

Long term conservative care utilizing instrument spinal adjusting and targeted axial distraction therapy significantly reduced subjective reporting of pain, increased activities of daily living, and allowed the patient to avoid further spinal injections or surgical intervention.  Considering that various interventional procedures failed prior to conservative care, it is important that providers work in an interdisciplinary environment such that the safest, and in this case the most effective, therapies are utilized first to reduce risk to the patient and maximize benefit and reduce costs.

In this case study, the patient utilized multiple pain management physicians, cervical nerve blocks and epidural steroid injections, and was not directed to conservative care for 11 months post injury.  Utilizing chiropractic as conservative care would have enabled this patient to regain function and decrease pain while reducing costs and risks that are associated with medications and interventional procedures.

Competing Interest:  There are no competing interests in the writing of this case report.

De-Identification: All of the patient’s data has been removed from this case.

  1. Cocchiarella L., Anderson G. Guides to the Evaluation of Permanent Impairment, 5th Edition, Chicago IL, 2001 AMA Press.
  2. Khan S, Cook J, Gargan M, Bannister G. A symptomatic classification of whiplash injury and the implications for treatment. Journal of Orthopaedic Medicine 1999; 21(1):22-25.
  3. Woodward MN, Cook JCH, Gargan MF, Bannister GC. Chiropractic treatment of chronic whiplash injuries. Injury 1996;27: 643-645.
  4. Whedon J, Mackenzie T, Phillips R, Lurie J. Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-99 years. Spine, 2015; 40:264–270.
  5. Hestbaek L, Munck A, Hartvigsen L, Jarbol DE, Sondergaard J, Kongsted A: Low back pain in primary care: a description of 1250 patients with low back pain in Danish general and chiropractic practices. Int J Family Med, 2014.    
  6. Faldini C., Leonetti D., Nanni M. et al: Cervical disc herniation and cervical spondylosis surgically treated by Cloward procedure: a 10-year-minimum follow-up study.  Journal of Orthopaedics and Traumatology, June 2010. Volume 11, Issue 2,pp 99-103.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Case Reports

Chiropractic’s Role in Decreasing Premature Death with Associated Back Pain

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature      

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported in the Feb. 13 issue of The Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including more depression and physical limitations. MD Lynx on Family Medicine reported “Nearly four million people in Australia suffer from low back pain and the total cost of treatment exceeds $1 billion a year.(https://www.mdlinx.com/family-medicine/top-medical-news/article/2017/03/08/7076443?utm_source=in-house&utm_medium=message&utm_campaign=mh-fm-march17)

 

When we consider mortality and the causes, most only attribute causality to the last diagnosis or pathology associated with the immediate cause of death. In recent literature, there have been studies studying the effects of long-term pain and all-causes of death inclusive of cancers and cardiovascular issues and are now considering these co-morbidities, rather than “stand-alone causes.”  

 

Docking et. Al (2015) reported:

 “This study confirmed previous findings regarding the relationship between pain and excess mortality. Further, we have shown that among older adults, this association is specific to disabling pain and to woman. Clinicians should be aware not only of the short-term implications of disabling back pain, but also the long-term effects.” (pg. 466)

 

 

The Family Medicine, MD Lynx reported on March 8, 2017:

New research from the Faculty of Health Sciences finds that older people with back pain have a 13 per cent higher chance of dying prematurely. The 600,000 older Australians who suffer from back pain have a 13 per cent increased risk of dying from any cause, University of Sydney research has found. Published in the European Journal of Pain, the study of 4390 Danish twins aged more than 70 years investigated whether spinal pain increased the rate of all–cause and disease–specific cardiovascular mortalityOur study found that compared to those without spinal pain, a person with spinal pain has a 13 per cent higher chance of dying every year. This is a significant finding as many people think that back pain is not life–threatening,” said senior author Associate Professor Paulo Ferreira, physiotherapy researcher from the University’s Faculty of Health Sciences.

 

The Family Medicine, MD Lynx also reported on March 8, 2017:

 “Medications are mostly ineffective, surgery usually does not offer a good outcome.”

 

It was reported byShaheed, Mahar, Williams, and McLachlin(2014) that out of the 4,336 studies they identified,concluded that,

“None of the trials evaluating [medical] advice or bed rest reported statistically and clinically important effects at any time point…The effects of advice on disability are similar to those for pain, with pooled results showing no clinical significant effect for the short and long-terms” (Shaheed, 2014, p. 5). “Pooled results from 2 studies on bed rest showed a statistically significant negative effect of bed rest in the immediate term…” (Shaheed et al., 2014,p. 10).

 

Shaheed et al. (2014) continued

 “There is no convincing evidence of effectiveness for any intervention available [with] OTC (over the counter drugs) or advice in the management of acute low back pain” (p. 11). The authors did report, “In the intermediate term, results from one of the studies involving referral to an allied HCP [health care provider] and reinforcement of key messages at follow-up visits showed significant effects in the intermediate and long-terms” (Shaheed et al., 2014, p. 12).

 

A 2005 study by DeVocht, Pickar, & Wilder concluded through objective electrodiagnostic studies (neurological testing) that 87% of chiropractic patients exhibited decreased muscle spasms. This study validates the reasoning behind the later study that people with severe muscle spasms in the low back respond well to chiropractic care and this prevents future problems and disabilities. It also dictates that care should not be delayed or ignored due to a risk of complications. The above statistic indicates that while medicine cannot conclude an accurate diagnosis in 85% of their back-pain patients, chiropractic has already helped 87% of the same population.

 

In a study by Leeman, Peterson, Schmid, Anklin, and Humphrys(2014), there is further successful evidence of the effects of mechanical back pain, both acute and chronic pain with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients. In this study, the acute onset patient (the patient’s pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Again, this is an environment where research has concluded that medicine has poor choices based upon outcomes for what they label “nonspecific low back pain.” The results indicate that chiropractic has defined this “nonspecific lesion” as a “bio-neuro-mechanical lesion” also known as the chiropractic vertebral subluxation and the evidence outlined on these pages, combined with the ever-growing body of outcome studies verify that medicine can reverse this epidemic by considering chiropractors as “primary spine care providers” or the first option for referral for everything spine short of fracture, tumor or infection.

 

The research is starting to show the far “reaching effects of chronic low back pain and the evidence has supported that chiropractic must take a lead role in the management of this population of patients. Based upon the evidence, anything short of that is a public health risk.

  

References:

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from:http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3.  Is Back Pain Killing Us? (2017) Retrieved from: https://www.mdlinx.com/family-medicine/top-medical-news/article/2017/03/08/7076443?utm_source=in-house&utm_medium=message&utm_campaign=mh-fm-march17
  4. Docking, R. E., Fleming, J., Brayne, C., Zhao, J., Macfarlane, G. J., & Jones, G. T. (2015). The relationship between back pain and mortality in older adults varies with disability and gender: Results from the Cambridge City over75s Cohort (CC75C) study.European Journal of Pain,19(4), 466-472.
  5. Abdel Shaheed, C., Mahar, C. G., Williams, K. A., & McLachlin, A. J. (2014). Interventions available over the counter and advice for acute low back pain: Systematic review and meta-analysis. The Journal of Pain,15(1), 2-15.
  6. DeVocht, J. W., Pickar, J. G., & Wilder, D. G. (2005). Spinal manipulation alters electromyographic activity of paraspinal muscles: A descriptive study. Journal of Manipulative and Physiologic Therapeutics, 28(7), 465-471.
  7. Leeman, S., Peterson, C., Schmid, C., Anklin, B., Humphrys, K. (2014). Outcomes of acute and chronic patients with magnetic resonance imaging-confirmed symptomatic lumbar disc herniations receiving high-velocity, low-amplitude, spinal manipulative therapy: A prospective observational cohort study with one year follow up. Journal (3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic as the Solution for Mechanical Spine Failure and Failed Back Surgery.

By: William J. Owens DC, DAAMLP

Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

A report on the scientific literature. 

 

The latest CDC statistics show that in 2012, 54 out of 100 people had self-reported musculoskeletal conditions.  By way of comparison, that is six times more than self-reported cases of cancer, double that of respiratory disease and one-third more than circulatory disorders.  If we extrapolate that to a more current population in the United States of 321 million, that equates to 173 million people reporting musculoskeletal problems in 2012.  Many of these are spine patients who suffer long-term without any type of biomechanical assessment or functional case management. 

In 2013, Itz, Geurts, van Kleef, and Nelemans reported, “Non-specific low back pain [LBP] is a relatively common and recurrent condition with major medical and economic implications for which today there is no effective cure” (p. 5).  The idea that spinal pain has a “natural history” resulting in a true resolution of symptoms is a myth and the concept that spine pain should only be treated in the acute phase for a few visits has no support in the literature.  We don’t address cardiovascular disease in this manner, i.e. wait until you have a heart attack to treat, we don’t follow this procedure with dentistry, i.e. wait until you need a root canal to treat, and we certainly don’t handle metabolic disorders such as diabetes in this way, i.e. wait until you have diabetic ulcers or advanced vascular disease to treat.  Why does healthcare fall short with spinal conditions in spite of the compelling literature that states the opposite in treatment outcomes?

The front lines of medical care for spine-related pain is typically the prescription of pain medication, particularly at the emergency care level, and then if that doesn’t work, a referral is made to physical therapy. If physical therapy is unsuccessful, the final referral is to a surgeon.  If the surgeon does not intervene with surgery, then the diagnosis becomes “non-specific back pain” and the patient is given stronger medication since there is nothing the surgeon can do.  In those surgical interventions that result in persistent pain, a commonly reported problem, there is an ICD-10 diagnosis for failed spine surgery, M96.1 

A recent article Ordia and Vaisman (2011) described this syndrome a bit further stating the following, “We propose that these terms [post laminectomy syndrome or failed back syndrome] should be replaced with Post-surgical Spine Syndrome (PSSS)” (p. 132).  They continued by reporting, “The incidence of PSSS may be reduced by a meticulous neurological examination and careful patient selection.  The facet and sacroiliac joints should always be examined, particularly when the pain is predominantly in the lower back, or when it radiates only to the thigh or groin and not below the knee” (Orida & Vaisman, 2011, p. 132). The authors finally stated, “Adherence to these simple guidelines can result in a significant reduction in the pain and suffering, as also the enormous financial cost of PSSS” (Orida & Vaisman, 2011, p. 132).  What they are referring to is a careful distinction between an “anatomical” versus a “biomechanical” cause of the spine pain. 

According to Mulholland (2008), “[Surgery] Spinal fusion became what has been termed the “gold standard” for the treatment of mechanical low back pain, yet there was no scientific basis for this” (p. 619). He continued, “However whilst that fusion [surgery] may be very effective in stopping movement, it was deficient in relation to load transfer” (Mulholland, 2008, p. 623). He concluded, “The concept of instability as a cause of back pain is a myth. The clinical results of any procedure that allows abnormal disc loading to continue are unpredictable” (Mulholland, 2008, p. 624).  Simply put, surgery does not correct the underlying biomechanical failure or the cause of the pain.

When a biomechanical assessment is lacking, the patient’s pain persists and allopathic medicine is focused on “managing the pain” vs. correcting the underlying biomechanical lesion/pathology/imbalance, the medication of choice at this point in care has been opioid analgesics.  Back in 2011, the CDC reported, “Sales of OPR quadrupled between 1999 and 2010. Enough OPR were prescribed last year [2010] to medicate every American adult with a standard pain treatment dose of 5 mg of hydrocodone (Vicodin and others) taken every 4 hours for a month” (p. 1489).  That was 6 years ago, which was when people began to feel that treating musculoskeletal pain with narcotics was trending in the wrong direction.  Now, in 2016, we can see there is a problem of epidemic proportions to the point that MDs are changing how they refer spine patients for diagnosis and treatment. 

Dowell, Haegerich, and Chou (2016), along with the CDC, published updated guidelines relating to the prescription of opioid medication:

Opioid pain medication use presents serious risks, including overdose and opioid use disorder. From 1999 to 2014, more than 165,000 persons died from overdose related to opioid pain medication in the United States. In the past decade, while the death rates for the top leading causes of death such as heart disease and cancer have decreased substantially, the death rate associated with opioid pain medication has increased markedly.

a recent study of patients aged 15–64 years receiving opioids for chronic noncancer pain and followed for up to 13 years revealed that one in 550 patients died from opioid-related overdose at a median of 2.6 years from their first opioid prescription, and one in 32 patients who escalated to opioid dosages >200 morphine milligram equivalents (MME) died from opioid-related overdose. (p. 2)

Clearly, there needs to be a nationwide standard for the process by which patients with spine pain are handled, including academic and clinical leadership on spinal biomechanics.  The only profession that is poised to accomplish such a task is chiropractic.

In a recent study by Houweling et al. (2015), the authors reported, “The purpose of this study was to identify differences in outcomes, patient satisfaction, and related health care costs in spinal, hip, and shoulder pain patients who initiated care with medical doctors (MDs) vs those who initiated care with doctors of chiropractic (DCs) in Switzerland” (p. 477).  This is an important study which continually demonstrates maintaining access to chiropractic care, for both acute and chronic pain is critical.  We can also see from current utilization statistics that chiropractic care is underutilized on a major scale.  The authors also state, “Although patients may be comanaged with other medical colleagues or paramedical providers (eg, physiotherapists), treatment for the same complaint may vary according to the type of first-contact provider. For instance, MDs tend to use medication, including analgesics, muscle relaxants, and anti-inflammatory agents, for the treatment of acute nonspecific spinal pain, whereas DCs favor spinal manipulative therapy as the primary treatment for this condition” (Houweling et al., 2015, p. 478).  The continue by stating “This study showed that spinal, hip, and shoulder pain patients had modestly higher pain relief and satisfaction with care at lower overall cost if they initiated care with DCs, when compared with those who initiated care with MDs” (Houweling et al., 2015, p. 480).  Overall, when taking cost into consideration, “Mean total spinal, hip, and shoulder pain-related health care costs per patient during the 4-month study period were approximately 40% lower in patients initially consulting DCs compared with those initially consulting MDs” (Houweling et al., 2015, p. 481).  The authors concluded, “The findings of this study support first-contact care provided by DCs as an alternative to first-contact care provided by MDs for a select number of musculoskeletal conditions” (Houweling et al., 2015, p. 481).

Bases on the literature and outcome studies, backed up with 121 years of doctors of chiropractic and their patients’ testimonies, the time has never been better for the chiropractic profession to move into treating the 93% of the population that is not under care. Chiropractic must be moved from the accepted standard of biomechanical processes in the laboratory to the standard of care for spine beyond fracture, tumor or infection across all professions, inclusive of physical therapy. The outcomes overwhelmingly support that anything less perpetuates the epidemic of failed back treatments.   

References

1. Centers for Disease Control and Prevention. (2015). National hospital discharge survey. Retrieved from: http://www.cdc.gov/nchs/nhds.htm

2. United States Census Bureau. (n.d.). Quick facts, United States. Retrieved from https://www.census.gov/quickfacts/

3. Itz, C. J., Geurts, J. W., van Kleef, M., & Nelemans, P. (2013). Clinical course of nonspecific low back pain: A systematic review of prospective cohort studies set in primary care. European Journal of Pain, 17(1), 5-15.

4. Ordia, J., & Julien Vaisman. (2011). Post-surgical spine syndrome. Surgical Neurology International, 2, 132.

5. Mulholland, R. C. (2008). The myth of lumbar instability: The importance of abnormal loading as a cause of low back pain. European Spine Journal, 17(5), 619-625.

6. Centers for Disease Control and Prevention. (2011). Vital signs: Overdoses of prescription opioid pain relievers - United States, 1999--2008. Morbidity and Mortality Weekly Report, 60(43), 1487-1492.

7. Dowell, D., Haegerich, T. M., & Chou, R. (2016). CDC guideline for prescribing opioids for chronic pain - United States, 2016. JAMA, 315(15), 1624-1645.

8. Houweling, T. A., Braga, A. V., Hausheer, T., Vogelsang, M., Peterson, C., & Humphreys, B. K. (2015). First-contact care with a medical vs chiropractic provider after consultation with a swiss telemedicine provider: Comparison of outcomes, patient satisfaction, and health care costs in spinal, hip, and shoulder pain patients. Journal of Manipulative and Physiological Therapeutics, 38(7), 477-483.

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic Outcome Studies on Treatment of Fragmented/Sequestered and Extruded Herniated Discs and Radicular Pain

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

 

Citation: Studin M., Owens W. (2016) Chiropractic Outcomes on Fragmented/Sequestered and Extruded Discs and Radicular Pain, American Chiropractor, 34 (11) 26, 28, 30, 32-33

 

Research Review:

 

Disc herniations are a common diagnostic entity in chiropractic practices with varied etiologies ranging from auto accidents to sports injuries to slips and falls and any other type of trauma that can cause the disc to tear. Treatment has varied from doing nothing to conservative care to opiates and the surgery and in the recent past, opiates and surgery have been the treatment of choice leaving a population of too many addicts and too often failed surgeries. This is not to suggest that all surgeries or opiates are unnecessary, but if drugs and/or surgery can be avoided it is an obvious choice.

 

 

When considering disc issues, Fardone et. Al (2014) defined the nomenclature that has been widely accepted both in academia and clinically and should be adhered to, to ensure that reporting and visualizing pathology is consistent with the morphology visualized. In the past, this has been a significant issue as many have called a bulge a protrusion, a prolapse or herniation. In today’s literature Fardone’s document has resolved much of those problems.

 

Herniated Disc: “Herniated disc is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ‘‘protruded disc’’ or ‘‘extruded disc.’’ The term ‘‘herniated disc,’’ as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ‘‘Localized’’ is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect.” (page E1454)

 

 

Protruded Disc: “Disc protrusions are focal or localized abnormalities of the disc margin that involve less than 25% of the disc circumference. A disc is ‘‘protruded’’ if the greatest dimension between the edges of the disc material presenting beyond the disc space is less than the distance between the edges of the base of that disc material that extends outside the disc space. The base is defined as the width of the disc material at the outer margin of the disc space of origin, where disc material displaced beyond the disc space is continuous with the disc material within the disc space. The term ‘‘protrusion’’ is only appropriate in describing herniated disc material, as discussed previously.” (page E1455)

 

Extruded Disc: “The term ‘‘extruded’’ is consistent with the lay language meaning of material forced from one domain to another through an aperture and with reference to a disc, the test of extrusion is the judgment that, in at least one plane, any one distance between the edges of the disc material beyond the disc space is greater than the distance between the edges of the base measured in the same plane or when no continuity exists between the disc material beyond the disc space and that within the disc space.” (page E1455)

 

Extruded Sequestered, Fragmented Disc or Migrated Disc: “Extruded disc material that has no continuity with the disc of origin may be characterized as ‘‘sequestrated.” A sequestrated disc is a subtype of ‘‘extruded disc’’ but, by definition, can never be a ‘‘protruded disc.’’ Extruded disc material that is displaced away from the site of extrusion, regardless of continuity with the disc, may be called ‘‘migrated,’’ a term that is useful for the interpretation of imaging studies because it is often impossible from images to know if continuity exists. (page E1455)

 

Bulging Disc: “The terms ‘‘bulge’’ or ‘‘bulging’’ refer to a generalized extension of disc tissue beyond the edges of the apophyses. Such bulging involves greater than 25% of the circumference of the disc and typically extends a relatively short distance, usually less than 3 mm, beyond the edges of the apophyses. ‘‘Bulge’’ or ‘‘bulging’’ describes a morphologic characteristic of various possible causes. Bulging is sometimes a normal variant (usually at L5–S1), can result from an advanced disc degeneration or from a vertebral body remodeling (as consequent to osteoporosis, trauma, or adjacent structure deformity), can occur with ligamentous laxity in response to loading or angular motion, can be an illusion caused by posterior central subligamentous disc protrusion, or can be an illusion from volume averaging (particularly with CT axial images).” (page E1455)

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbertin (2010) that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for herniated disc a more recent study (Lehman ET. Al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one-year mark after the onset of the original complaint. Although one might argue that the patient would have gotten better with no treatment it was reported that after two weeks of no treatment only 36% of the patients felt better and at 12 weeks up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to their normal life without pain, drugs or surgery.

 

             Chiropractic Care and Herniated Discs with Leg Pain

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

In a prospective outcome study, Ehrler et. Al. (2016) studied outcomes of chiropractic care on both extruded and sequestered disc patients. They reported “The purpose of this study was to evaluate whether specific MRI features, specifically axial location and type (bulge, protrusion, extrusion, sequestration) of a herniated disc, are associated with the short and long term outcomes of patients treated with high-velocity, low-amplitude SMT specifically to the level of the symptomatic, MRI confirmed, herniation. This is the first study to address this question. Studies searching for predictors of improvement after treatment in previous low back pain patients did not target type and axial location of the herniated discs.Additionally, patients with disc sequestration were not excluded from this study.” (Page 196)

 

Ehrler et. Al. continued “Over 77% of patients with disc sequestration reported clinically relevant “improvement” compared to 66.7% of patients with extrusion. Although not statistically significant, 100% of patients with sequestration reported clinically relevant improvement at the 3-month data collection time point and at all data collection time points a higher proportion of patients with sequestration reported clinically relevant improvement. There were no significant differences for disc herniation location either by spinal level or in the axial plane for any of the data collection time points. This now calls into question the traditional thinking that disc sequestrations are more dangerous than herniations that remain attached to the parent disc and are more likely to require surgery. However, the studies reporting this did not consider chiropractic spinal manipulative therapy as a treatment option.” (page 197)

 

I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified” (Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Fardon, D. F., Williams, A. L., Dohring, E. J., Murtagh, F. R., Gabriel Rothman, S. L., & Sze, G. K. (2014). Lumbar disc nomenclature: Version 2.0. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine, 39(24), E1448-E1465.
  1. Leeman S., Peterson C., Schmid C., Anklin B., Humphryes B., (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging-Confirmed Symptomatic Lumbar Disc Herniations Receiving High-Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One-Year Follow Up, Journal of Manipulative and Physiological Therapeutics, 37 (3) 155-163
  2. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiscectomy for sciatica? A prospective randomized clinical study. Journal of Manipulative and Physiological Therapeutics, 33 (8) 576-584
  3. Ehrler M., Peterson C., Leeman S., Schmid C., Anklin B., Humphreys B. K., (2016) Symptomatic, MRI Confirmed, Lumbar Disc Herniations: A Comparison of Outcomes Depending on the Type and Anatomical Axial Location of the Hernia in Patients Treated with High-Velocity, Low-Amplitude Spinal Manipulation, Journal of Manipulative and Physiological Therapeutics, 39 (3) 192-199
  4. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic vs. Physical Therapy

 in Treating Low Back Pain

with Spinal Adjustments vs. Exercise Rehabilitation

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported that “Researchers from the University of Washington, Seattle, found that the nation's dramatic rise in expenditures for the diagnosis and treatment of back and neck problems has not led to expected improvements in patient health. Their study appears in the Feb. 13 issue of The Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including more depression and physical limitations.

 

“We did not observe improvements in health outcomes commensurate with the increasing costs over time," lead researcher Brook I. Martin, MPH, and colleagues wrote. "Spine problems may offer opportunities to reduce expenditures without associated worsening of clinical outcomes." (http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain) Part of the explanation for the rise in cost of treatment of low back pain is the utilization of physical therapy by allopath’s (medical primary care providers and medical specialists) as the primary option for the treatment of low back pain vs. the literature verified better alternative of chiropractic based upon outcome studies.  

 

Through the years, both chiropractors and physical therapists have concurrently utilized exercise rehabilitation as a modality to treat low back pain. As a rule, the chiropractic profession has utilized exercise rehabilitation as an adjunct to the spinal adjustment where in physical therapy, it has been the main focus of the treatment plan. In addition, other passive modalities to mitigate pain, such as electrical stimulation and/or hydro/cryotherapy has been utilized as an adjunct to each professions main treatment. As a rule, exercise rehabilitation is a crucial adjunct to the treatment of low back disorders as it adds necessary motion to the joint and helps balance muscle tone required to create a biomechanically stabilized joint over time.

However, Ianuzzi and Khalsa (2005) wrote (pg. 674)

           

Facet joint capsule strain magnitudes during simulated high velocity low amplitude spinal manipulations were within the range of motion occurred during maximum physiological motions, indicating that the procedure is biomechanically safe and provide a stimulus that is likely sufficient to stimulate facet joint capsule neurons. However, physiological motions of the lumbar spine by themselves (e.g. Exercise) are generally ineffective in treating low back pain, suggesting that facet joint capsule strain magnitude alone would be insufficient in providing a novel stimulus for facet joint capsule afferents.

 

The high strain rates that occurred during spinal manipulation could provide a novel “yet biomechanically safe” stimulus for afferents innervating given facet joint capsule. Alternatively, during spinal manipulation, the relative magnitudes (patterns) of facet joint capsule strain was in a region of the lumbar spine may be unique, which could result in a novel pattern of facet joint capsule mechanoreceptor firing in the spinal region and subsequently a novel stimulus to the central nervous system.

 

Simply put, the facet joint capsules are comprised of ligaments where the mechanoreceptors are located. A spinal manipulation (chiropractic spinal adjustment) stimulates the neurons in the capsule where exercise (physiological motion) does not. In addition, it has been shown that chiropractic spinal adjustments are safe to the joint capsule and ligaments that comprise the capsule.

 

References:

 

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from:http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3. Ianuzzi A., Khalsa P. (2005) High Loading Rate During Spinal Manipulation Produces Unique Facet Joint Capsule Strain Patterns Compared With Axial Rotations, Journal of Manipulative and Physiological Therapeutics 28 (9), 673-687

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Spinal Fusion vs. Chiropractic for Mechanical Spine Pain

 

By. Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

 

A report on the scientific literature

 

As Chien and Bajwa (2008) pointed out, one of the most common maladies in our society today is back pain and 97% of the time, the pain is considered mechanical back pain. That is pain that arises from things other than fractures, tumors or infection and is one of the leading causes of visits to primary care medical doctors. Peterson, Bolton and Humphreys (2012), Baliki, Geha, Apkarian, and Chialvo (2008), and Apkarian et al. (2004) all agreed that at any given time, upwards of 10% of the population suffers from back pain and upwards of 80% of those back pain sufferers have chronic problems.  For pain to be considered chronic, it must persist for greater than 6 months.

 

Mulholland reported (2008)

The cause and hence the best treatment of “mechanical” low back pain remains unsolved, despite nearly a century of endeavour. It is now generally accepted that some form of failure of the intervertebral disc is central to causation. In the latter half of the twentieth century, failure of the disc leading to abnormal movement, popularly called instability, legitimised the use of fusion as treatment. However, the unpredictable results of fusion, which did not improve despite progressively more rigid methods of fusion cast doubts on the concept that back pain was movement related and that stopping movement was central to its treatment. (Pg. 619)

 

The only reason for fusion appeared to be that, other treatments had failed, that it was reasonable from the psychological viewpoint, and that instability was present. Instability is defined elsewhere in the book as increased abnormal movement, and this is illustrated by x-rays purporting to show abnormal rotations and various types of abnormal tilt. He accepts that such appearances may be entirely painless, but in the patient with back pain they identify the causative level, and fusion is justified. (Pg. 620)

However, whilst that fusion may be very effective in stopping movement, it was deficient in relation to load transfer. (pg. 623)

 

The reason load transfer is critical to normal spinal biomechanics (function) is one of remodelling and the prevention of premature and unnecessary advanced arthritic changes. Based upon Wolff’s Law, with abnormal load, the entire joint will remodel in the body’s innate goal of creating homeostasis from a structural perspective.

 

 

In support of the above consideration, Mulholland concluded:

Abnormal movement of a degenerated segment may be associated with back pain but is not causative. The concept of instability as a cause of back pain is a myth. The clinical results of any procedure that allows abnormal disc loading to continue are unpredictable.

If it is accepted that load transfer disturbance is the central issue in mechanical back pain, then treatment can be directed to remedy this. Fusion will only do this if it reliably takes over the loading function of the disc. Movement preserving procedures such as “flexible stabilization” or an artificial disc are compatible with preserving motion but with an artificial disc bony integration between plate and vertebrae would appear to be essential, not just to stop movement, but to transfer load normally. (pg. 624)

 

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbert in 2010 that approximately 250,000 patients annually undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc (mechanical spine) issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for mechanical spine pathology, a more recent study by Leemann et al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study, the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Although the literature clearly indicates chiropractic as a superior choice for mechanical back pain for both disability and pain indicating function has normalized and that spinal fusion creates permanent abnormal load transfers leading to a higher risk of premature arthritis and spinal biomechanical failures, the consideration that was omitted in Mulholland’s paper was that of aberrant neurological sequella. The arbiter for surgery vs. chiropractic care that should be strongly considered is where the delay in surgery will possibly cause permanent neurological damage.

 

Clinically, regardless of the mechanical failure, (including, but not limited to disc extrusions both migrated and sequestered) and/or the presentation of exquisite pain, should the patient present with intact motor and sensory function upon examination, there is less consideration of adverse issues developing from chiropractic care that will take time in the rehabilitation process. However, if there is significant motor and/or sensory loss indicating compression or significant abutment of the cord or root, then delaying surgery can increase the risk of creating long-term neurological damage. In either scenario, while managing these types of patients, the chiropractor should consider co-managing with a spine surgeon who is versed in chiropractic care and contemporary literature that has objectified both treatment outcomes.

 

References:

  1. Chien, J., J., & Bajwa, Z. H. (2008). What is mechanical spine pain and how best to treat it? Current Pain and Headaches Report, 12(6), 406-411
  2. Baliki, M. N., Geha, P. Y., Apkarian, A. V., & Chialvo, D. R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neurosciences,28(6) http://www.jneurosci.org/content/28/6/1398.full
  3. Apkarian, V., Sosa, Y., Sonty, S., Levy, R., Harden, N., Parrish, T., & Gitelman, D. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24(46), 10410-10415.
  4. Mulholland R. (2008) The myth of lumbar instability: the importance of abnormal loading as a cause of low back pain, European Spine Journal 17 (5) 619-625
  5. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiskectomy for sciatica? A prospective randomized clinical study. . Journal of Manipulative and Physiological Therapeutics, 33(8), 576-584.
  6. Leeman S., Peterson C., Schmid C., Anklin B., Humphrys K. (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging Confirmed Symptomatic Lumbar Disc Herniations Receiving High Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study with One Year Follow Up, Journal(3), 155-163.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems

Chiropractic Care for Neck and Low Back Pain: Evidenced Based Outcomes

 

98.5% of chiropractic patients had their expectations exceeded

 

By: Mark Studin DC, FASBE(C), DAAPM, DAAMLP

William J. Owens DC, DAAMLP

A report on the scientific literature

 

As the scientific, academic and reimbursement establishments further entrench in an evidenced based model, it is critical to both examine and utilize studies when treating mechanical spine patients with chiropractic care. Although there are many sects in the chiropractic profession who shun the title “mechanical spine pain,” it is universally accepted term interprofessionally for any etiology of spine pain exclusive of tumor, fracture or infection. This definition fits every licensure board’s scope of practice for chiropractic where chiropractic is licensed. 

 

In the United Kingdom, Field and Newell (2016) reported that back pain accounts for 4.8% of all social benefit claims with overall costs reaching $7 billion pounds or $9.35 billion US dollars. Boyles (2016) reported that “Researchers from the University of Washington, Seattle, found that the nation's dramatic rise in expenditures for the diagnosis and treatment of back and neck problems has not led to expected improvements in patient health. Their study appears in the Feb. 13 issue ofThe Journal of the American Medical Association. After adjustment for inflation, total estimated medical costs associated with back and neck pain increased by 65% between 1997 and 2005, to about $86 billion a year… Yet during the same period, patients reported more disability from back and neck pain, including moredepressionand physical limitations.

 

“We did not observe improvements in health outcomes commensurate with the increasing costs over time," lead researcher Brook I. Martin, MPH, and colleagues wrote. "Spine problems may offer opportunities to reduce expenditures without associated worsening of clinical outcomes." (http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain)

 

Although it has been widely reported that expenditures a decade later has far exceeded the 2005 figure, the opioid epidemic, in part from musculoskeletal etiology is another example WebMD’s reporting on the American Medical Association’s finding of increased disability from neck and back pain inclusive of depression and physical limitations. The variable therefore is not predicated on financial expenditures, but treatment paradigms that work and have been verified in an evidenced based environment. 

 

Clinicians should always be striving to offer the best care at the lowest cost available. Carriers should always strive to fulfill their contractual obligation of providing necessary care delivered in a usual and customary manner while preventing overutilization through built-in safeguards. With doctors managing their patient’s conditions, there are two major parameters that are utilized, best medical practice also known as “experience” and evidence-based practice or that which has only been concluded in the medical literature. Both have a strong place in the healthcare delivery and reimbursement systems.  

"A best practiceis a method or technique that has consistently shown results superior to those achieved with other means, and that is used as a benchmark. In addition, a "best" practice can evolve to become better as improvements are discovered. These are procedures in healthcare that are taught in schools, internships and residencies and are considered the “standard” by which procedures are followed. These practices are based on clinical experience and rely heavily on time-tested approaches. Surprisingly, most of the best medical practice care paths are not published in the peer-reviewed indexed literature. This is due to many factors, but the most obvious are applications of financial resources to “new” discoveries and the simple fact that the clinical arena is adequate to monitor and adjust these practices in a timely manner for practice to keep up with the literature that follows. 

 

Evidence-based practice(EBP) is an interdisciplinary approach to clinical practice that has gained ground following its formal introduction in 1992. It started inmedicineasevidence-based medicine (EBM) and spread to other fields such as dentistry, nursing, psychology,

education, library and information science and other fields. Its basic principles are that all practical decisions made should 1) be based on research studies and 2) that these research studies are selected and interpreted according to some specific norms characteristic for EBP. Typically, such norms disregardtheoretical studiesandqualitative studiesand considerquantitative studiesaccording to a narrow set of criteria of what counts as evidence.

 

 

"Evidence-based behavioral practice(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses" (Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

 

This highly-debated topic of evidence-based vs. best practice has valid issues on each side, but putting them together as a hybrid would allow them to thrive in both a healthcare delivery and reimbursement system; all sides would win. This would allow advances in healthcare to save more lives, increase the quality of life and at the same time, offer enough safeguards to prevent abuse to payors. A one-sided approach would tip the scales to either the provider/patients or the payors.

Fields and Newell (2016) studied 2 groups of patients, those treated in private practices and the second in the United Kingdom’s funded National Health Service clinics. For this report, I will focus on the Government funded National Health Service statistics. The evidence sought was the satisfaction of patients with both neck and low back pain who underwent chiropractic care and in this report it satisfies both paradigms of “Best Practice and Evidenced Based Practice” models. They reported that 98.5% of neck and low back pain “patients were more likely to have had their expectations exceeded” (pg. 57) under chiropractic care.

 

 

In a healthcare environment, where overspending is both not the solution and problematic by creating iatrogenic issues in the form of opioid addiction and unresolved biomechanical failures leading to premature long-term musculoskeletal degenerative Fields and Newell have simply asked the patients, have your needs been met or exceeded. Not to diminish studies on the why or how come, patient satisfaction in an evidenced based outcome study that verifies it works with a drug-free option.

 

 

As with many of our articles from here forward, I would like to leave you with a last and seemingly unrelated statement.  I felt it was important to add this at the end since many of our critics negatively portray the safety of chiropractic care.  This statement shall put that to rest leaving only personal biases left standing. Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects and after the unqualified subjects had been removed from the study, the total patient number accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified”(Whedon et al., 2015, p. 5). This study supersedes all the rhetoric about chiropractic and stroke and renders an outcome assessment to help guide the triage pattern of mechanical spine patients.

 

References:

  1. Field J., Newell D. (2016) Clinical Outcomes In a Large Cohort of Musculoskeletal Patients Undergoing Chiropractic Care In the United Kingdom: A Comparison of Self and National Health Service Referral Routes, Journal of Manipulative and Physiological Therapeutics, 39(1), pgs. 54-62
  2. Boyles S., $86 Billion Spent on Back, Neck Pain, WebMD (2016) Retrieved from: http://www.webmd.com/back-pain/news/20080212/86-billion-spent-on-back-neck-pain
  3. Best Practice. (2016). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Best_practice
  4. Evidence-Based Practice. (2016). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Evidence-based_practice
  5. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Neck Problems

 

Chiropractic vs. Oral Steroids vs. Muscle Relaxants: Outcomes for Low Back Pain and Sciatica

 

A report on the scientific literature 


By Mark Studin DC, FASBE(C), DAAPM, DAAMLP

 

Reference: Studin M. (2015) Chiropractic vs. Oral Steroids vs. Muscle Relaxants: Outcomes for Low Back Pain and Sciatica,The American Chiropractor, 37(7) 42-47

 

Choices. Every health care practitioner is caring for his/her patients having multiple treatment options and often those choices are influenced by pieces of information. That information can be what was learned in formal training, colleagues sharing anecdotal experience, patients giving direct feedback or well-scripted “representatives” of the pharmaceutical industry who only have one agenda…sales.As a result of doctors managing their patients’ conditions, there are two major parameters that are utilized, best medical practice, also known as “experience,” and evidence-based practice or that which has only been concluded in the medical literature. Both have a strong place in a healthcare delivery system with the best possible outcomes as the ultimate goals.

 

“A best practiceis a method or technique that has consistently shown results superior to those achieved with other means, and that is used as a benchmark. In addition, a "best" practice can evolve to become better as improvements are discovered. (“Best Practice,” http://en.wikipedia.org/ wiki/Best practice).”

 

“Evidence-based practice (EBP) is an interdisciplinary approach to clinical practice that has been gaining ground following its formal introduction in 1992. It started inmedicineasevidence-based medicine (EBM) and spread to other fields such as dentistry, nursing, psychology, education, library and information science…” (“Evidence-Based Practice,” http://en.wikipedia.org/wiki/Evidence-based_practice) and other fields. Its basic principles are that all practical decisions made should 1) be based on research studies and 2) that these research studies are selected and interpreted according to some specific norms characteristic for EBP. Typically such norms disregardtheoretical studiesandqualitative studiesand considerquantitative studiesaccording to a narrow set of criteria of what counts asevidence.

 

 

“’Evidence-based behavioral practice’(EBBP) entails making decisions about how to promote health or provide care by integrating the best available evidence with practitioner expertise and other resources, and with the characteristics, state, needs, values and preferences of those who will be affected. This is done in a manner that is compatible with the environmental and organizational context. Evidence is comprised of research findings derived from the systematic collection of data through observation and experiment and the formulation of questions and testing of hypotheses" (“Evidence-Based Practice, http://en.wikipedia.org/wiki/Evidence-based_practice).

 

This highly-debated topic of best practice vs. evidence-based practice has valid issues on each side, but putting together the two concepts as a hybrid would allow them to thrive in any healthcare delivery system as all options would be considered. This would allow advances in healthcare to save more lives, increased quality of life and at the same time, enough safeguards to prevent abuse of those with one-sided agendas to profit. It would also take the blinders off those who have dogmatic prejudice against that which has been verified to be successful in both the best practice and evidenced-based models (experience and literature).   

For years, too many non-chiropractic practitioners have ignored the “best practice” model or the results reported by both the patients and the practicing chiropractors with treatments regarding low back and leg pain (often associated with herniated discs). These non-chiropractic practitioners refuse to consider chiropractic as a first referral option. The main reason cited over the past few decades as this author’s personal experience has been that there is no literature that proves these claims in spite of patients corroborating their positive experiences with the chiropractors’ claims. As a result of ignorance, blinders and possibly a deep rooted prejudice, too many patients have been and are currently being treated with poor alternatives based upon outcomes that are now being clearly reported. Treatment with both oral steroids and muscle relaxers are two often used, but inferior choices and now the literature verifies why chiropractic is the best possible first-line of referral for diagnosis that are the subject for this paper.

 

ORAL STEROIDS

Goldberg et al. (2015) reported: Despite conflicting evidence, [epidural steroid injections] are frequently offered under the assumption that radicular symptoms are caused by inflammation of the affected lumbar nerve root.Epidural steroid injections are invasive, generally require a pre-procedure magnetic resonance imaging (MRI) study, and expose patients to fluoroscopic radiation. In addition, the US Food and Drug Administration recently warned of rare but serious neurologic sequella from [epidural steroid injections].Oral administration of steroid medication may provide similar anti-inflammatory activity, does not require an MRI or radiation exposure, can be delivered quickly by primary care physicians, carries less risk, and would be much less expensive than an [epidural steroid injection]. Oral steroids are used by many community physicians, have been included in some clinical guidelines,and are noted as a treatment option by some authors.However, no appropriately powered clinical trials of oral steroids for radiculopathy have been conducted to date. To address this issue, we performed a parallel-group, double-blind randomized clinical trial of a 15-day tapering course of oral prednisone vs placebo for patients with an acute lumbar radiculopathy associated with a herniated lumbar disk... (p. 1916).

 

Results showed that “participants in both blinded treatment groups showed an improvement in symptoms over the initial 6 weeks, with more gradual reductions until the 24-week visit, after which changes were more variable. Baseline ODI [Oswestry Disability Index] scores were 51.2 and 51.1 in the prednisone and placebo groups, respectively; corresponding ODI scores at 3 weeks were 32.2 and 37.5” (Goldberg, 2015, p. 1919-1920). This indicates that both at 3 and 6 weeks there was no difference in the placebo vs. oral steroid groups. Among patients with acute radiculopathy due to a herniated lumbar disk, a short course of oral steroids, compared with placebo, resulted in modest improvement in function and no significant improvement in pain” (Goldberg, 2015, p.1922).

 

MUSCLE RELAXANTS

 

Hoiriis et al. (2004) reported, “Reviews of low back pain studies often fail to distinguish between manipulative interventions. Manipulation and spinal manipulative therapy (SMT) are vague terms describing procedures used by chiropractors, physiotherapists, massage therapists, and osteopaths. These maneuvers may decrease ligamentous adhesions and myospastn, increase disk nutrition, or alter the function of the nervous system. The manipulative procedures used in this study, referred to as chiropractic adjustments, involve specific application of force thought to restore mechanical and neurological function to the spine…This study was a randomized clinical trial (RCT) in which subjects and assessors were blinded to the interventions, chiropractic providers were blinded to medical/sham assignment and an independent consultant provided the statistical analysis. Visit lengths and provider-subject interactions were monitored to preserve patient blinding” (p. 389).

 

At the 2 week period, the study revealed that the chiropractic group had statistically slightly better outcomes, but statistically insignificant, than the muscle relaxants and at the 4 week period had a significantly reduced visual analog pain scale of 24% from the muscle relaxant group and 23% from the placebo group. Although the authors reported this as statistically insignificant, I don’t, and one cannot lose sight of the fact that chiropractic outperformed muscle relaxant therapy with the absence of any possibility of side effects from medications, making the utilization of the drugs clinically unnecessary based upon the outcomes of a safer and statistically better alternative.  

 

CHIROPRACTIC TREATMENT

 

It was reported by McMorland, Suter, Casha, du Plessis, and Hurlbert in 2010 that over 250,000 patients a year undergo elective lumbar discectomy (spinal surgery) for the treatment of low back disc issues in the United States. The researchers did a comparative randomized clinical study comparing spinal microdiscectomy (surgery) performed by neurosurgeons to non-operative manipulative treatments (chiropractic adjustments) performed by chiropractors. They compared quality of life and disabilities of the patients in the study. 

 

The study was limited to patients with distinct one-sided lumbar disc herniations as diagnosed via MRI and had associated radicular (nerve root) symptoms. Based upon the authors’ review of available MRI studies, the patients participating in the study were all initially considered surgical candidates. Both the surgical and chiropractic groups reported no new neurological problems and had only minor post-treatment soreness. 60% of the patients who underwent chiropractic care reported a successful outcome while 40% required surgery and of those 40%, all reported successful outcomes. This study concluded that 60% of the potential surgical candidates had positive outcomes utilizing chiropractic as the alternative to surgery.

 

Although the previous report concluded that a chiropractic spinal adjustment is an effective treatment modality for a herniated disc, a more recent study by Leemann et al. (2014), further clarifies the improvement with chiropractic care. This study considered both herniated discs and radiculopathy or pain radiating down into the leg as a baseline for analysis. The study also considered acute and chronic lumbar herniated disc pain patients.

 

In this study, the acute onset patient (the pain just started) reported 80% improvement at 2 weeks, 85% improvement at 1 month, and a 95% improvement at 3 months. The study went on to conclude that the patient stabilized at both the six month and one year marks following the onset of the original pain. Although one might argue that the patient would have gotten better with no treatment, it was reported that after two weeks of no treatment, only 36% of the patients felt better and at 12 weeks, up to 73% felt better. This study clearly indicates that chiropractic is a far superior solution to doing nothing and at the same time helps the patient return to his/her normal life without pain, drugs or surgery.

 

Chiropractic Care and Herniated Discs with Leg Pain

 

2 Week Improvement

1 Month Improvement

3 Month Improvement

80.6%

84.6%

94.5%

 

The caveat is that there are patients who could need drugs or surgery and an accurate diagnosis is paramount. It is incumbent upon the doctor of chiropractic to be fully trained in both the diagnostic and treatment facets of care. It is also important that the chiropractor be well-versed in MRI protocols and interpretation as well as disc pathology in order to be able to triage the patient accordingly based upon the clinical presentation inclusive of the MRI results.

 

Chiropractic is one of the safest treatments currently available in healthcare and when there is a treatment where the potential for benefits far outweighs any risk, it deserves serious consideration.  Whedon, Mackenzie, Phillips, and Lurie (2015) based their study on 6,669,603 subjects after the unqualified subjects had been removed from the study and accounted for 24,068,808 office visits. They concluded, “No mechanism by which SM [spinal manipulation] induces injury into normal healthy tissues has been identified (Whedon et al., 2015, p. 5) 

 

CONCLUSION

 

Contemporary research is clearly defining the most effective and safest treatment options for low back pain sufferers with associated leg pain (sciatica). In too many offices today, chiropractic treatment is not being considered the first option for care and the responsibility to change that habit falls to the chiropractic profession. Our profession is no different than the pharmaceutical companies who have an “army” of drug representatives. Pharmaceutical sales representative (formerly detailmen) are sales people employed bypharmaceutical companiesto persuade doctors to prescribe their drugs to patients. Drug companies in theUnited Statesspend ~$5 billion annually sending representatives to doctors,to provide product information, answer questions on product use, and deliver product samples. Companies maintain this provides an educational service by keeping doctors updated on the latest changes in medical science. Critics point to a systematic use of gifts and personal information to befriend doctors to influence their drug prescriptions.”  (http://en.wikipedia.org/ wiki/Pharmaceutical_sales_representative)

 

What makes the chiropractic profession different from the “real world” of business? The answer is absolutely nothing and it is incumbent upon every entity of the profession from individual practitioners to organizations to start educating the public and every referral source because we now have the evidence. Oral steroids offer no relief and modest return to function. Muscle relaxants offer some help, but render worse results than chiropractic care with clearly defined side effects that can be avoided. It has been clearly concluded that chiropractic care is an extremely safe environment regarding side effects. That is verifiable with close to 7 million subjects studied. By considering chiropractic as the first-line for referral, the scientific evidence verifies solutions to low back pain and leg pain inclusive of herniated discs. The results indicate that at 2 weeks, 80.6% and at 3 months 94.5% of those with herniated dics show significant improvement with chiropractic care.

 

References:

1. Best Practice. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Best_practice

2. Evidence-Based Practice. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Evidence-based_practice

3. Goldberg, H., Firtch, W., Tyburski, M., Pressman, A., Ackerson, L., Hamilton, L.,…Avins, A. L. (2015). Oral steroids for acute radiculopathy due to a herniated lumbar disk: A randomized clinical trial. Journal of the American Medical Association (JAMA), 313(19), 1915-1923.

4. Hoiriis, K. T., Pfleger, B., McDuffie, F. C., Cotsonis, G., Elsangak, O., Hinson, R., & Verzosa, G. T. (2004). A randomized clinical trial comparing chiropractic adjustments to muscle relaxants for sub-acute low back pain. Journal of Manipulative and Physiological Therapeutics, 27(6), 388-398.

5. McMorland, G., Suter, E., Casha, S., du Plessis, S. J., & Hurlbert, R. J. (2010). Manipulation or microdiskectomy for sciatica? A prospective randomized clinical study. .Journal of Manipulative and Physiological Therapeutics, 33(8), 576-584.

6. Leeman S., Peterson C., Schmid C., Anklin B., Humphrys K. (2014) Outcomes of Acute and Chronic Patients with Magnetic Resonance Imaging Confirmed Symptomatic Lumbar Disc Herniations Receiving High Velocity, Low Amplitude, Spinal Manipulative Therapy: A Prospective Observational Cohort Study With One Year Follow Up, .Journal of Manipulative and Physiological Therapeutics, 37(3), 155-163.

7. Whedon, J. M., Mackenzie, T. A., Phillips, R. B., & Lurie, J. D. (2015). Risk of traumatic injury associated with chiropractic spinal manipulation in Medicare Part B beneficiaries aged 66-69 years. Spine, 40(4), 264-270.

8. Pharmaceutical Sales Representative. (2015). Wikipedia. Retrieved from http://en.wikipedia.org/wiki/ Pharmaceutical_sales_representative

 

Dr. Mark Studin is an Adjunct Associate Professor of Chiropractic at the University Of Bridgeport College Of Chiropractic, an Adjunct Professor, Division of Clinical Sciences at Texas Chiropractic College and a clinical presenter for the State of New York at Buffalo, School of Medicine and Biomedical Sciences for post-doctoral education, teaching MRI spine interpretation and triaging trauma cases. He is also the president of the Academy of Chiropractic teaching doctors of chiropractic how to interface with the legal community (www.DoctorsPIProgram.com), teaches MRI interpretation and triaging trauma cases to doctors of all disciplines nationally and studies trends in healthcare on a national scale (www.TeachDoctors.com). He can be reached at or at 631-786-4253 or DrMark@AcademyOfChiropractic.com 

 

Share this

Submit to DeliciousSubmit to DiggSubmit to FacebookSubmit to Google BookmarksSubmit to StumbleuponSubmit to TechnoratiSubmit to TwitterSubmit to LinkedIn
Published in Low Back Problems
Page 1 of 3